• Title/Summary/Keyword: 장기 체공 비행

Search Result 26, Processing Time 0.022 seconds

Research on Dual Flight Control System for High Altitude Long Endurance UAV (고고도 장기체공 무인기의 비행제어시스템 이중화에 대한 연구)

  • An, Seok-Min;Kim, Seong-Uk;Yu, Hyeok
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.55-58
    • /
    • 2015
  • 고고도 장기체공 무인기는 일반적인 무인기와 달리 고고도에서의 환경과 장시간의 체공에 따른 위험도가 높을 수밖에 없다. 따라서 신뢰도를 높이기 위한 다양한 방안을 강구해야 한다. 가장 중요한 요소 중 하나가 비행제어시스템이며, 본 논문에서는 비행제어시스템의 이중화에 따른 설계결과와 비행시험결과를 기술하였다.

  • PDF

Multidisciplinary Design Optimization(MDO) of a Medium-Sized Solar Powered HALE UAV Considering Energy Balancing (에너지 균형조건을 고려한 중형 태양광 추진 고고도 장기체공 무인기의 다분야 통합 최적설계)

  • Park, Kyung-Hyun;Min, Sang-Gyu;Ahn, Jon;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • A MDO study of a midium-sized solar powered High Altitude Long Endurance (HALE) UAV has been performed, focused on energy balance. In the MDO process, Vortex Lattice Method(VLM) is employed for the aerodynamic modeling of the vehicle, of which structural weight is estimated with the modeling proposed by Cruz. Tail volume ratios have been set as constants, while the location of tail surfaces is determined from longitudinal static stability criterion. By balancing the available energy from solar cells, battery, and altitude, with the energy-requirement of the vehicle, the possibility of continuous flight over 24-hours has been investigated. The solar radiation level is set as that of summer at the latitude of $36^{\circ}$ north. During the daytime, the aircraft climbs using solar energy, accumulating potential energy, which supplements energy balance during the night. Optimizations have been sought in size of the vehicle, its weight distribution, and flight strategy.

Design of Guidance Law and Lateral Controller for a High Altitude Long Endurance UAV (고고도 장기체공 무인기의 유도 및 방향축 제어 알고리즘 설계)

  • Koo, Soyeon;Lim, Seunghan
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • This paper elaborates on the directional axis guidance and control algorithm used in mission flight for high altitude long endurance UAV. First, the directional axis control algorithm is designed to modify the control variable such that a strong headwind prevents the UAV from moving forward. Similarly, the guidance algorithm is designed to operate the respective algorithms for Fly-over, Fly-by, and Hold for way-point flight. The design outcomes of each guidance and control algorithm were confirmed through nonlinear simulation of high altitude long endurance UAV. Finally, the penultimate purpose of this study was to perform an actual mission flight based on the design results. Consequently, flight tests were used to establish the flight controllability of the designed guidance and control algorithm.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (3) - Flight Test Results and Analysis of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (3) - 태양광 무인기 비행실험 결과 및 분석 -)

  • Kim, Doyoung;Kim, Taerim;Jeong, Jaebaek;Park, Sanghyuk;Bae, Jae-Sung;Moon, Seokmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.489-496
    • /
    • 2022
  • This paper introduces the system for KAU-SPUAV, which is designed and developed by Korea Aerospace University, and verifies its performance through flight test. Specification of two versions of KAU-SPUAV, avionics system, and Ground Control System (GCS) are introduced. Three missions are performed with suggested UAVs: LTE signal mapping, circumnavigation of Jeju island seashore, and long endurance flight. Each mission consists of long distance and long endurance flight which takes advantage of KAU-SPUAV. Research team of KAU-SPUAV confirmed its versatility through suggested flight data. Also based on flight results, the team found the potential of performance improvement of KAU-SPUAV.

Search and Rescue and Disaster Response Using 5G-Based Liquid Hydrogen Drone (5G 기반 액화 수소 드론(UAV)을 이용한 수색 구조 및 재난 대응)

  • Oh, Se-Jin;Min, Jae-Hong;Hong, Sung-An
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.369-370
    • /
    • 2022
  • 4차 산업혁명이 도래함에 따라서 군사용으로 개발된 드론이 광범위하게 다양한 분야에 활용되어 가고 있다. 드론의 활용으로 이전에 사람이 접근하기 어려웠던 지역이나 현장을 원격탐사 및 데이터 취득이 가능하게 되면서, 도시문제 해결과 재난에 대응할 수 있다. 하지만 기존 드론의 동력원으로 사용하는 리튬폴리머(Li-Po)는 짧은 비행시간 때문에, 재난 현장의 드론 투입에 한계가 있다. 이러한 문제점을 보완하기 위하여 기존 드론 대비 4배 이상 향상된 비행시간을 통해 장기체공이 가능한 액화 수소 드론의 도입이 필요한 것으로 보인다. 늘어난 비행시간과 비가시 장거리 비행 능력을 통해 높은 효율을 낼 수 있는 액화 수소 드론의 활용으로 효과적인 재난 대응 활동에 대한 연구가 필요하다.

  • PDF

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (1) - System Design of a Solar Powered UAV with 4.2m Wingspan - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (1) - 주익 4.2m 태양광 무인기 시스템 설계 -)

  • Jeong, Jaebaek;Kim, Doyoung;Kim, Taerim;Moon, Seokmin;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.471-478
    • /
    • 2022
  • This paper is about research and development of Korea Aerospace University's Solar-Powered UAV System that named of KAU-SPUAV, and describes the design process of the 4.2 m solar UAV that succeeded in a long flight of 32 hours and 19 minutes at June 2020. In order to improve the long-term flight performance of the KAU-SPUAV, For reduce drag, a circular cross-section of the fuselage was designed, and manufactured light and sturdy fuselage by applying a monocoque structure using a glass fiber composite material. In addition, a solar module optimized for the wing shape of a 4.2 m solar drone was constructed and arranged, and a propulsion system applied with the 23[in] × 23[in] propeller was constructed to improve charging and flight efficiency. The developed KAU-SPUAV consumes an average of 55W when cruising and can receive up to 165W of energy during the day, and its Long-term Endurance was verified through flight tests.

Design Parameter Analysis of a Solar-Powered, Potential Energy-Storing, Long Endurance UAV (위치에너지를 축적하는 태양동력 장기체공 무인기의 설계 인자 분석)

  • Yang, In-Young;Lee, Bo-Hwa;Chang, Byung-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.927-934
    • /
    • 2011
  • Design parameter analysis is performed for a solar-powered UAV, storing potential energy by climb flight. Parameters related to the flight for saving potential energy, i.e. minimum & maximum altitudes for level flight, gliding & climbing angle, design point speed & altitude, gliding & climbing start time are investigated as design parameters. Weight and size of the UAV are determined using a weight model for the components of the solar-powered UAVs. Produced energy and consumed energy are calculated using these weight and size, yielding the required weight of the battery for a given mission. Relationship between the total weight of the UAV and each parameter is investigated. For the parameters listed above, there exist their ranges only where the design is possible. And there exist optimal values of these parameters minimizing the total weight.

Structural Analysis of Fasteners in the Aircraft Structure of the High-Altitude Long-Endurance UAV (고고도 장기체공 무인기용 기체구조 체결부 구조 해석)

  • Kim, Hyun-gi;Kim, Sung Joon;Kim, Sung Chan;Kim, Tae-Uk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2018
  • Unmanned Aerial Vehicles (UAV) have been used for various purposes in multiple fields, such as observation, communication relaying, and information acquisition. Nowadays, UAVs must have high performance in order to acquire more precise information in larger amounts than is now possible while performing for long periods. At present, domestically, a high-altitude long-endurance UAV (HALE UAV) for long-term flight in the stratosphere has been developed in order to replace some functions of the satellite. In this study, as a part of structural soundness evaluation of the aircraft structure developed for the HALE UAV, the structural soundness of the fasteners of the fuselage and tail is evaluated by calculating the margin of safety(M.S). The result confirms the validity of the design of the fasteners in the aircraft structure of the UAV.

Reverse-Engineering and Analysis of Performance for Medium-Altitude Long Endurance Unmanned Aerial Vehicle (중고도-장기체공 무인비행을 위한 비행체 성능 분석 및 역설계)

  • Shim, Ho-Joon;Chang, Kyoungsik;Chung, In Jae;Kim, Sun-Tae;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.520-529
    • /
    • 2016
  • The main purpose of this study was to analyze the performance of a medium-altitude long endurance unmanned aerial vehicle through reverse-engineering method. The external configuration data of the RQ-1 Predator was reverse-engineered from related photos and specification data available on public domains, which also were used to generate the CATIA modeling and weigh distribution data of the UAV. The aerodynamic characteristics of RQ-1 Predator were mainly predicted the vortex lattice method and an empirical method, which the propeller performance was analyzed by the empirical method proposed by Howe. The rate of climb, service ceiling, range, and the loiter endurance of the UAV was analyzed, which showed good agreement with the reference data.

Flight Test of Hybrid Propulsion System for Electrically Powered UAV (전기동력 무인기용 하이브리드 추진시스템 비행시험)

  • Park, Poomin;Kim, Keunbae;Cha, Bongjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.49-55
    • /
    • 2013
  • This paper deals with the flight test of propulsion system of middle size electrically powered UAV (EAV2, Electric Aerial Vehicle 2) which is under development in KARI. EAV2 is low speed endurance type UAV whose wing span is 6.9 m, and weight is 18 kg. The UAV has flown for 22 hours in June of 2012. The flight test result showed that the propulsion system worked well suppling power for any circumstances during the test flight. Each power source worked according to the design purpose.