• Title/Summary/Keyword: 장기 공용성

Search Result 77, Processing Time 0.024 seconds

A Study for Controlling Early-age Temperature Rise of the Concrete Pavement by Shadow Tent in Hot Weather Construction (차광막를 이용한 하절기 콘크리트포장의 초기온도 관리 방안연구)

  • Joh, Young-Oh;Kim, Hyung-Bae;Suh, Young-Chan;Ann, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.75-89
    • /
    • 2004
  • Long term performance of concrete pavement significantly depends on the given construction and environmental condition. It means that random cracks and extreme crack width due to inappropriate quality control at the early age might lead to decreasing the pavement service life. The temperature and moisture during the construction, cement and aggregate types, curing condition are major components to affect the quality of the concrete pavement at the early age. First of all, the high temperature differential, that is made by increasing air temperature and the heat of cement hydration, is known as the major contributor to severe cracks. In this study, tent covering was used for controlling temperature of the concrete slab. The field measurement data indicates that the effect of the tent covering is very significant to decrease possibilities of random crack occurrence and curling stress and enhance the long-term concrete strength. HIPERPAV(High PERformance PAVing software), a program predicting the strength and stress of an earty-age concrete pavement (72 hour after placement), is used for simulating the effects of tent covering. The HIPERPAVE results showed that the section with the tent covering has higher reliability than the section without the tent covering by 22.5%. In details, reliability is increased 72.5% (without the tent covering) to 95% (with the tent covering).

  • PDF

An Experimental Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete Pavement (하이브리드 섬유로 보강된 콘크리트 포장의 역학적 특성 실험연구)

  • Park, Jong-Sup;Choi, Sung-Yong;Jung, Woo-Tai;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Cement concrete pavement offers long-term service life and excellent applicability for heavy traffic. It is easier to purchase and more durable and economical than the asphalt pavement. However, it is difficult to repair and rehabilitate compared to the asphalt pavement when it comes to the maintenance problem. Since the crack is the main reason of the damage of concrete pavement, it is necessary to control the early and long-term crack in the concrete pavement. In this experimental study, the basic performance tests have been carried out to investigate the effect of hybrid fibers which were composed of micro fibers with small diameter and high aspect ratio and macro fibers with large diameter and low aspect ratio on the concrete pavement, in which lower water ratio and larger aggregates were used compared to the general concrete mixture. The test results showed that the flexural strength and toughness of concrete pavement mixture have been increased with the use of hybrid fibers in the concrete pavement mixture, even though they were less effective compared to the normal concrete mixture. It was found that the hybrid fibers were effective to control the early shrinkage of the concrete pavement which is one of the main reasons of the damage in the concrete pavement.

Development of Calibration Model and Analysis of Soil Water Content using Time-Domain Refelctometry Probe in LTPP Sections (LTPP 구간에서 TDR 방식 함수량계를 이용한 현장함수비 보정모델 개발과 함수비 분석 연구)

  • Kim, Boo-Il;Jeon, Sung-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.103-112
    • /
    • 2005
  • Water content of sub-layer in pavement systems has a large effect on pavement performance. Many researchers lately make use of time-domain reflectometry(TDR) probes to measure the soil water content of sub-layer from field monitoring. The laboratory calibration test of TDR probe should be performed with soil field, because TDR probe can cause an error by type, gradation, density, and temperature of soil. This study performed the laboratory calibration test of TDR probe(CS616) with subgrade and subbase material in long term pavement performance(LTPP) sections. And the calibration equations of TDR probe(CS616) were then proposed. It was confirmed from the study that the data of TDR probe monitored in field could be used to estimate the freezing, unfrozen water content, and matric suction of soil.

  • PDF

Joint Behavior of Concrete Pavements Using Joint Crack Inducer (줄눈균열 유도장치를 사용한 콘크리트 포장의 줄눈거동)

  • Park, Moon Gil;Choi, Ki Hyo;Nam, Young Kug;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.57-65
    • /
    • 2008
  • Joint of concrete pavement contributes to improvement of pavement performance by preventing occurrence of random cracking due to drying shrinkage and temperature changes of concrete slabs at early age. However, saw-cutting operations performed prior to sufficient concrete hardening develop micro-cracking of the concrete near the joints, which may develop to long-term distresses due to repetitious traffic and environmental loadings. To reduce the distresses, the joint crack inducers with heights of 100 mm, 150 mm, and 220 mm and the joint cracking slots with various depth were installed at a test section to investigate occurrence of the joint cracks and their behaviors over 5 months. As the results, higher efficiency of the crack inducing and larger behavior of the joint cracks were observed for the taller joint crack inducer. Higher efficiency of the crack inducing and improvement of the joint performance are warranted by additional investigation and reformation of the joint crack inducer.

Estimation of Bond Performance Improvement by Surface Treatment Equipments and Polymer Content by Boned Concrete Overlays (접착식 콘크리트 덧씌우기 경계면 처리 방식 및 폴리머 혼입률에 따른 부착성능 평가)

  • Jung, Won Kyong;Kim, Hyun Seok;Kwon, Oh Seon;Kim, Hyung Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • Repair methods of aging concrete pavement are generally used composite structure pavements, such a composite structure is subjected to a large impact on the mechanical behavior and ensure long-term commonality integrated under vehicle loads, environmental loads of the public in accordance with the bond strength between old and new concrete. A common of bonded concrete overlays that are currently available is Interface arrangements using a variety of equipment to ensure the excellent bond strength between old and new concrete than standard concrete, mixed with a material such as a polymer in order to improve the adhesion with the material itself. However, these method of constructions are being applied, depending on the developer site presents no special specifications apply when a specific application criteria objectively, this is due to the situation of each individual method, which is based on the difficulty in quality control of the site manager. In this study by performing a field test for polymer content via the variables that contribute most significantly to ensure bond strength and the field element core of the interface processing method and materials to ensure bond strength between the old and the new concrete, it was to derive the construction site construction method that can improve the performance of the bond strength through a review of the construction around the correlations and the bond strength according to the effective performance analysis of the conventional surface treatment process and variation of polymer volume fraction.

Development of a Probabilistic Joint Opening Model using the LTPP Data (LTPP Data를 이용한 확률론적 줄눈폭 예측 모델 개발)

  • Lee, Seung Woo;Chon, Sung Jae;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.593-600
    • /
    • 2006
  • Joint opening of jointed concrete pavement is caused by change in temperature and humidity of adjoined slab. The magnitude of joint opening influences on the load-transfer-efficiency and the behavior of sealant. If temperature or humidity decreases, joint opening increases. Generally maximum joint opening of a given joint is predicted by using AASHTO equation. While different magnitudes of joint opening at the individual joints have been observed in a given pavement section, AASHTO equation is limited to predict average joint opening in a given pavement section. Therefore the AASHTO equation may underestimate maximum joint for the half of joint in a given pavement section. Joints showing larger opening than the designed may experience early joint sealant failure, early faulting. Also unexpected spalling may be followed due to invasion of fine aggregate into the joints after sealant pop-off. In this study, the variation of the joint opening in a given pavement section was investigated based on the LTPP SMP data. Factors affecting on the variation are explored. Finally a probabilistic joint opening model is developed. This model can account for the reliability of the magnitude of joint opening so that the designer can select the ratio of underestimated joint opening.

Traffic Demand Forecasting Method for LCCA of Pavement Section (도로포장의 생애주기비용 분석을 위한 장기 교통수요 추정)

  • Do, Myungsik;Kim, Yoonsik;Lee, Sang Hyuk;Han, Daeseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2057-2067
    • /
    • 2013
  • Traffic demand forecasting for pavement management in the present can be estimated using the past trends or subjective judgement of experts instead of objective methods. Also future road plans and local development plans of a target region, for example new road constructions and detour plans cannot be considered for the estimate of future traffic demands. This study, which is the fundamental research for developing objective and accurate decision-making support system of maintenance management for the national highway, proposed the methodology to predict future traffic demands according to 4-step traffic forecasting method using EMME in order to examine significance of future traffic demands affecting pavement deterioration trends and compare existing traffic demand forecasting methods. For the case study, this study conducted the comparison of traffic demand forecasting methods targeting Daejeon Regional Construction and Management Administration. Therefore, this study figured out that the differences of traffic demands and the level of agent costs as well as user costs between existing traffic demand forecasting methods and proposed traffic demand forecasting method with considering future road plans and local development plan.

Adjustment of Creep Coefficient Using Sensitivity Analysis (민감도 해석을 통한 크리프 계수 오차 보정)

  • Park, Jong-Bum;Park, Bong-Sik;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.293-296
    • /
    • 2008
  • Creep and shrinkage in concrete structures are very complex phenomena in which various uncertainties exist with regard to inherent material variations as well as modeling uncertainties. The creep and shrinkage models which are capable of predicting long-term structural response are specified in design codes such as ACI 209-92, CEB-FIP Model Code 90, etc. However, in the prediction formulas of creep and shrinkage effects of concrete, various kinds of parameters are involved to express the characteristics of concrete under consideration (i.e. the proportion of concrete, the shape of the structure, relative humidity, etc.). And the predicted values from each design code under same environment differ from each other. To predict the characteristics of concrete, the long-term experiments of creep and shrinkage is necessary but this is not suitable for a construction field. In this study, adjustment method of creep coefficient using sensitivity analysis is proposed to predict creep coefficient of concrete exactly and it is checked up on the validity of the predicting method by comparing to the assumed value and predicted one.

  • PDF

Property change of geopolymers after immersion (지오폴리머의 침지 후 물성변화)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.247-257
    • /
    • 2021
  • This study was started to investigate why autoclave curing (AC) specimen showed an improvement in compressive strength after immersion in water for a long time, although AC specimen did not showed a high initial compressive strength unlike our expectations. Distilled water and alkaline solutions were used for immersion and three different curing methods were engaged. It was expected that the compressive strength would be improved after immersion in alkaline solutions; however, there was little difference in compressive strength after 21 day immersion because both new crystallites produced by additional geopolymerization and expansion caused by the alkaline aggregate reaction may prevent the additional improvement in compressive strength. It was concluded that in order to secure the long-term commonality and underwater stability of the geopolymers, it is desirable aging geopolymers while immersing it underwater for more than 21 days after curing using an autoclave.

Evaluation of Traffic Load and Moisture-Induced Nonlinear In-situ Stress on Pavement Foundation Layers (도로기초에서 교통 및 환경하중에 의한 비선형 현장응력 평가)

  • Park, Seong-Wan;Hwang, Kyu-Young;Jeong, Mun-Kyoung;Seo, Young-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.47-54
    • /
    • 2009
  • Better understanding of in-situ mechanical behavior of pavement foundations is very important to predict long-term effects on the system performance of transport infrastructure. For this purpose resilient stiffness characterization of geomaterials is needed to properly adopt such mechanistic analysis under both traffic and environmental loadings. In this paper in-situ monitoring data from KHC test road were used to analyze the non-linear response using finite element method for a selected constitutive model of foundation geomaterials, and the results were compared with the field data.