정보처리 이론은 기억을 단기기억과 장기기억으로 구분하였다. 기억체계 이론은 기억이 정보처리 이론에서 가정하는 하나의 장기기억이 아닌 중다기억 체계로 기억이 조직화되어 lT다고 주장한다. 대표적인 기억체계정보처리 이론은 기억을 단기기억과 장기기억으로 구분하였다. 기억체계 이론은 기억이 정보처리 이론에서 가정하는 하나의 장기기억이 아닌 중다기억 체계로 기억이 조직화되어 lT다고 주장한다. 대표적인 기억체계 이론으로는 Schacter와 Tulving 의 기억모형(1994)과 Squire 의 장기기억 분류 모형(1987)이 있다 두 모형은 단기기억과 장기기억의 구분, 기억장애에 보존된 암묵기억 수행에는 견해가 일치하지만, 기억장애가 일화기억만의 손상인지 아니면 의미기억을 포함하는지는 견해가 다르다. 그러나 현재의 자료로서는 일화기억과 의미기억의 구분이 더 정확한 설명인가 아니면 서술기억과 비서술기억의 구분이 더 나은 설명인가는 분명하지 않다. 전두엽에 대한 더 자세한 연구가 일화기억과 의미기억의구분과 관련되어 있다. 이론으로는 Schacter와 Tulving 의 기억모형(1994)과 Squire 의 장기기억 분류 모형(1987)이 있다 두 모형은 단기기억과 장기기억의 구분, 기억장애에 보존된 암묵기억 수행에는 견해가 일치하지만, 기억장애가 일화기억만의 손상인지 아니면 의미기억을 포함하는지는 견해가 다르다. 그러나 현재의 자료로서는 일화기억과 의미기억의 구분이 더 정확한 설명인가 아니면 서술기억과 비서술기억의 구분이 더 나은 설명인가는 분명하지 않다. 전두엽에 대한 더 자세한 연구가 일화기억과 의미기억의구분과 관련되어 있다.
본 논문에서 한국선물시장의 변동성과 수익률에 대한 장기기억의 경험적 근거를 보이기 위해 일별 수익률과 변동성에 대하여 장기기억성의 추정과 검정을 실시하였다. Geweke and Porter-Hudak(1983)의 반비모수적 추정법을 이용하여 장기기억모수를 추정하였으며 추정결과 수익률은 장기기억효과가 없었으며, 변동성에서 장기기억효과가 유의한 것으로 나타났다.
주가가 장기기억과정에 의하여 생성되면 주가과정에 가해진 충격은 쌍곡선감소율로 소멸한다. 따라서 충격의 영향이 대단히 느리게 감소하여 충격이 지속성을 가진다. 반면 주가가 단기 기억과정을 따르면 지수율로 감소하여 소멸한다. 지수율감소는 충격의 영향을 급속히 소멸시키므로 충격의 영향이 조만간 소멸한다. 따라서 충격으로 변화된 주가는 평균으로 회귀한다. 충격의 영향이 영원히 존재하는 과정도 존재한다. 장기기억과정은 쪽거리차분과정 또는 분수차분과정이다. 차분모수가 분수일 것이 요구되는 시계열은 장기기억과정이다. 주가가 장기기억과정에 의하여 생성되고 있는지의 여부를 검정하였다. 장기기억과정을 형성시키는 차분모수는 분수차분모수이다. 일별 주가지수의 수익률을 사용하여 차분모수를 추정하였는 바 그 값이 0에 근접하고 있음이 밝혀졌다. 그러나 Kospi, Nasdaq과 Mib30은 장기기억모수가 0에 접근하고 있으나 0이 아니다. 따라서 이 지수들은 장기기억과정에 의하여 생성된다고 할 수 있다. 반면 Dow Jones, S&P 500와 Dax는 장기기억모수가 0이라는 가설이 기각되지 않고 있어 이 지수들은 단기기억과정을 따르고 있다. 따라서 평균회귀과정에 의하여 생성되고 있음을 알 수 있다.
본 논문에서는 장기기억 변동성 모형의 필요성을 Value-at-Risk(VaR) 추정의 관점에서 알아본다. 이를 위해, KOSPI 수익률의 VaR을 FIGARCH, FIEGACH와 같은 장기기억 변동성 모형과 GARCH, EGARCH와 같은 단기기억 변동성 모형을 적용하여 각각 추정한 후, 각 변동성 모형에 따른 추정의 적절성을 사후검증을 통하여 비교해 본다. 사후검증을 통해, KOSPI 수익률 과정이 장기기억 속성을 가짐을 확인할 수 있으며, 적절한 VaR의 추정을 위해서는 장기기억 변동성 모형을 적용하는 것이 필요함을 알 수 있다.
우리나라의 애국가(愛國歌), 일본(Kimigayo) 그리고 미국국가(The star-spangled Banner) 등에 대해서 악보가 갖는 고유정보를 카오스적 접근 방법인 근사엔트로피(approximate entropy)와 허스트(Hurst) 지수를 이용하여 각각 음계(scale)의 복잡도(複雜度)와 장기기억속성(長期 記憶 屬性)을 계산하여 비교하였던 바, 애국가가 상대적으로 복잡도에서 가장 높았으며, 세 국가 모두 장기 기억효과가 있는 것으로 나타났는데, 지속적인(persistent) 성향은 일본국가가 가장 컸다.
변동성을 정확하게 예측하는 것은 금융시장의 변동성 연구에 있어 특히 포트폴리오선택, 옵션가격결정, 위험관리와 관련하여 매우 흥미로운 연구주제이다. 왜냐하면 변동성은 시장의 위험을 의미하기 때문이다. 이 논문은 세 가지 변동성 모형(GARCH, IGARCH, FIGARCH)을 이용하여 호주 주가지수선물시장의 일일후 변동성을 예측하고 각 모형의 예측력을 비교 분석하였다.특히 호주 주가지수선물 변동성에 존재하는 장기기억 특성에 초점을 맞추고 실증분석하였다. 실증분석 결과 FIGARCH 모형이 GARCH 모형이나 IGARCH 모형보다 호주 주가지수선물시장의 장기기억 특성을 더 잘 포착한다는 것을 발견하였다. 또 세 모형 중 FIGARCH 모형을 이용할 경우 일일후 변동성 예측의 성과가 가장 우수하다는 것도 발견하였다. 이는 호주 주가지수선물 변동성에 장기기억이 존재하는 것을 의미하고, 변동성의 특징을 명시적으로 고려하는 FIGARCH 모형이 장기기억을 고려하지 않는 다른 모형들보다 예측성과 측면에서 더 우수하다는 것을 의미한다. 따라서 호주 주가지수선물시장의 장기기억 변동성을 예측하는 데는 FIGARCH 모형이 가장 유용한 것으로 나타났다.
쇄신의 분산이 무한인 주가시계열이 장기의존성 과정에 의하여 생성되고 있는가 또는 생성되고 있지 않는가를 검정하고자 한다. 기존의 연구가 쇄신의 분산이 유한한 경우에 한정하여 장기의존성 주가 과정에 대한 장기기억성이 검토되어왔다. 이 논문에서는 쇄신의 분산이 유한한 경우와 무한한 경우에 다같이 적용되는 방법들을 한국종합주가지수의 일별수익률에 적용하여 장기기억 모수를 추정 검정한다. 추정방법으로서는 분수 가우스 잡음, 가우스 분수적분 자기회기 이동평균, 선형 분수안정잡음 등이 형성되는 상황에 절대값 방법, 분수 방법과 총량화 Whittle 방법을 사용한다. 한국종합주가지수의 일별대수수익률 시계열은 분산이 무한한 경우에도 장기의존성과정에 의하여 생성되고 있다. 극치가 존재해도 장기기억과정이 형성 되고 있다.
경제에 미친 충격이 경제에 일시적 영향을 미치고 사라지며 그 영향력이 곧 소멸하고 마는 경우와 영구히 존속하는 경우가 있을 수 있다. 경제에 불현듯 다가와 영향력을 행사한 충격이 일시적으로 존재하고 사라지느냐 아니면 영원히 또는 장기적으로 존재하느냐 하는 것은 경제 현상을 시계열적으로 파악하고 이해하는 데 중요한 요소이다. 충격이 경제 내에 장기기억으로 존재한다면 경제 현상은 경제가 시작되는 순간부터 현재까지의 충격들의 결합적 집합이라 할 수 있을 것이다. 이 논문에서는 적분확률과정의 모수 d가 정수를 갖지 않고 비정수를 갖을 때의 ARIMA(p, d, g)process, 즉 ARFIMA(p, d, q)process의 비정수차분 모수 d를 추정 하고자 한다. 그리고 이 비정수차 분모수의 추정과 검정을 통하여 우리나라의 주가가 충격을 받았을 때 이 충격을 금시 해소시키고 버리는지, 또는 장기적으로 기억하여 항상 주가에 반영시키고 있는지의 여부를 검증하였다. 이 논문에서는 periodogram 방법과 lag window 방법을 다같이 사용하여 차분모수 d를 추정하고 표준오차를 계산하여 d의 추정치에 대한 기각여부를 검정한 우리나라의 주식시장은 충격에 대한 장기기억을 보유하고 있다는 것을 발견하였다. 이와 같은 발견은 충격적이다.
본 논문은, 장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측 모형을 제안하고자 한다. 트래픽 과부하를 대비하기 위해서, 트래픽 용량은 트래픽의 예측치와 트래픽의 변동 크기에 따라 트래픽의 최대용량을 설정하여야 한다. 이를 위하여 교내 트래픽 자료 중 교내로 들어오는 트래픽과 교외로 나가는 트래픽에 이분산성과 장기기억 모형의 유용성을 확인하였다. 이에 대하여 AR-GARCH 모형, ARMA-GARCH 모형과 장기기억모형인 Fractional ARIMA와 장기기억과 이분산성을 고려한 Fractional ARMA-GARCH 모형을 적용하여 모형의 예측성능을 비교하였다.
HMD의 대중적 도입으로 인해 가상현실에 대한 관심이 커지고 있다. 이런 가상현실에서의 활동은 현실과는 다른 효과들 가져올 것으로 예상되어 가상현실과 현실 간 비교 효과연구가 필요하다. 특히 가상현실에서의 교육적 효용성은 여러 연구에서 입증하고 있으나, 아직 특수교육의 경험적 맥락에 그치고 있다. 이 연구는 가상현실의 환경 안에서 교육게임콘텐츠의 기억 습득이 이루어 질 때 나타나는 장기기억효과에 대한 실증적 연구를 실시하였다. 가상현실이 아닌 e-러닝 조건과 가상현실조건 e-러닝 두 조건 내에서 학습기억실험을 실시하여 장기기억 감소율의 차이에 대한 평균차이를 검증한 결과 가상현실그룹에서 보다 낮은 기억감소율이 나타났다. 또한 배경의 유무에 따라 차이를 확인한 결과 가상환경배경이 제시된 경우에만 유의미한 차이가 나타나 가상현실의 가상환경이 장기기억의 중요한 요인임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.