• Title/Summary/Keyword: 잔류 진동

Search Result 123, Processing Time 0.024 seconds

Interaction Analysis of Dual-stage System during Seek Motion and Control for Track Pull-in Enhancement (탐색 과정시 2단 액추에이터의 상호 작용 분석 및 트랙 끌어들임 성능 향상을 위한 제어)

  • Lee, Kwang-Hyun;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil;Choi, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1276-1286
    • /
    • 2005
  • In this paper, the dual stage interaction between the coarse actuator and the fine actuator of an optical disk drive is studied, and the new control method to enhance the track pull-in performance using fine actuator control is proposed. First, the dynamic analysis for the dual stage and the experiments to find the each actuator dynamics are performed. From the experiments, some physical parameters of the actuators were derived, then, some simulations are performed to find the interaction effect of the fine actuator during seek motion. Second, the center servo which suppresses the vibration of fine actuator during seek motion is designed and evaluated. And the fine actuator control to reduce the relative velocity between the target track and beam spot is proposed. From simulations, we show that fine actuator control which has same frequency and same phase of the disturbance is effective to reduce the relative velocity, and this result leads to track pull-in enhancement. Hence, the proposed control method is good approach to improve the track pull-in performance. Finally, the realization of the proposed method and some comments of it are briefly discussed.

Dynamic Analysis of Simply Supported Flexible Structures Undergoing Large Overall Motion (전체운동을 하는 단순지지 유연 구조물의 동적해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1363-1370
    • /
    • 1995
  • A nonlinear dynamic modeling method for simply supported structures undergoing large overall motion is suggested. The modeling method employs Rayleigh-Ritz mode technique and Von Karman nonlinear strain measures. Numerical study shows that the suggested modeling method provides qualitatively different results from those of the Classical Linear Cartesian modeling method. Especially, natural frequency variations and residual deformation due to membrane strain effects are observed in the numerical results obtained by the suggested modeling method.

An Optimal Correction Balancing of A High-Speed Flexible Rotor (최적화기법을 이용한 고속 탄성회전체의 밸런싱)

  • 이용복;이동수;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1402-1410
    • /
    • 1995
  • An influence coefficient method with an optimal correction balancing algorithm is developed for balancing a high-speed flexible rotor system. Conventional flexible balancing algorithms such as least square and weighted least square algorithms may not satisfy allowable residual vibration levels in certain speed ranges, while the optimal correction balancing method can be more effective in controlling vibration levels in a target speed. Related analyses were reviewed and applied to a test rig to show the effectiveness of the optimal correction balancing method.

Residual Vibration Reduction of Precise Positioning Stage Using Virtual-Mode Based Input Shapers (가상모드 입력성형기를 이용한 위치결정 스테이지 잔류진동 저감)

  • Seo, Yong-Gyu;Jang, Joon-Won;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.255-260
    • /
    • 2009
  • This paper presents an experimental result of virtual mode input shaping for positioning stage. Input shaping is liable to increase the rise time of the system, which often degrades the performance of system. The virtual mode input, shaping is an input shaper design method to improve this problem. Experiments are performed with a precise positioning stage with a flexible beam of which natural frequency is adjustable. The experimental results show that the virtual-mode shaper is useful to reduce the rise time as well as the residual vibration of precise positioning stages.

  • PDF

Application of Piezoceramic Actuator for Inch-Worm (이송 자벌레로의 압전소자 응용)

  • 윤재헌;채재희;김인수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.877-880
    • /
    • 2001
  • This paper presents the new linear motion device so called "inch-worm" which gets large displacement by incrementally summing small displacements of PZT actuators. Dynamics stiffness of inch-worm is generally low compared to its driving condition due to the requirement of inch-worm like small size and light weight. This low stiffness may degenerate the positional precision of inch-worm. An inch-worm is realized using three PZT actuators, a monolithic moving device and a guide way frame. Driving input signal is shaped to reduce the residual vibration of inch-worm by LQG controller and cycloid step input. The practical feasibility of inch-worm is also examined by running test.ning test.

  • PDF

Control of Processing Conditions for Improvement of vibration Characteristics of Injection Molded Disk (사출성형 디스크의 진동특성 향상을 위한 공정조건 제어)

  • Sin Hyo-Chol;Nam Ji-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.615-621
    • /
    • 2006
  • Increased application of optical disks requires more improved dynamic stability of rotating disks. In this study, a new concept of controlling the processing conditions of injection molded disks was developed to improve vibration characteristics. The critical speed, which shows stiffness and dynamic stability of disk, is affected by the residual stress distribution; this varies as functions of distance from the gate and processing condition. The critical speed of disk was calculated with the initial stress taken into consideration, which was determined from injection molding simulation. Choosing melt temperature, mold temperature, filling speed and packing pressure as design parameters, critical speed is maximized with the method of response surface. It is shown that the stability of injection molded disk has been improved for the new condition obtained as a result of the study proposed.

Linux/RTAI-based Input Shaping Implementation for Suppressing Residual Vibrations (Linux/RTAI기반의 잔류진동 억제 입력성형 구현)

  • Woo, Kyo-Sik;Kim, Jin-Woo;Kang, Chul-Goo;Lee, Dong-Je;Park, Kyung-Hee;Kim, Hyung-Chul
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.250-256
    • /
    • 2009
  • Suppressing residual vibrations of flexible materials cheaply is an important issue to increase productivity of automated factory using wafer or glass handling robots. In this paper, we present Linux/RTAI-based implementation of input shaping control for reducing residual vibrations of a mechanical system. Experimental results show that residual vibrations of the mechanical system are reduced up to 82% at a point-to-point linear motion.

  • PDF

Design of Robust Convolution Input Shaper for the Variation of Frequency and Damping Ratio (주파수와 감쇠비 변화에 강인한 Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Im, Byeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers have been considered robustness fur only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness fur the variation of frequency and damping ratio.

Design of Robust Input Shaping Filter in the Z-domain (Z-영역에서 강인한 입력성형필터의 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk;Joo, Hae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.155-162
    • /
    • 1999
  • Input shaping technique has been used as a simple method of controlling the residual vibration of a flexible manipulator. With the conventional methods previously proposed by several authors, the frequency range that shows a good performance is restricted. When the designed frequency being different from the natural frequency of a system, the performance of control degrades remarkably. This paper introduced a new technique that designs input shaping with robustness in the z-domain.

  • PDF

Design of Robust Convolution Input Shaper for Variation of Parameter (파라메터 변화에 강인한 Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.127-133
    • /
    • 2001
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers has been considered robustness for only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness for the variation of frequency and damping ratio.

  • PDF