• Title/Summary/Keyword: 잔류 진동

Search Result 123, Processing Time 0.022 seconds

Dynamic Properties and Settlement Characteristics of Korea Weathered Granite Soils (화강풍화토의 동적 물성치와 침하특성에 대한 연구)

  • Park, Jong-Gwan;Kim, Yeong-Uk;Lee, In-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 1993
  • Weathered granite soil is the most representative as a surface soil in Korea. In this paper, the dynamic properties and settlement characteristics of Korea granite soil are studied through the dynamic triaxial compression tests. The dynamic characteristics are very important on the analysis of the foundations under dynamic loading such as machine vibration and earthquake. Soil samples having different grain sixtes were prepared at the relative densities between 80oA and 90oA and tested to measure shear moduli and damping ratios at each level of shear strain. The measured shear moduli of weathered granite soils showed large variations according to the grain sizes, confining pressures, relative densities and shear strains. Sandy weathered granite had a little larger dynamic properties than the average values of the sand studied by Seed and Idriss. Pot the well compacted granite soils, little residual settlements occured due to dynamic loading.

  • PDF

Development of An Unsteady Navier-Stokes Solver using Implicit Dual Time Stepping Method and DADI Scheme (내재적 이중시간 전진기법과 DADI 기법을 이용한 비정상 Navier-Stokes 코드개발)

  • Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.34-40
    • /
    • 2005
  • In present study, a two dimensional unsteady Navier-Stokes solver has been developed using the Diagonalized ADI (DADI) method and implicit dual time stepping method. The jacobian matrices in steady state Navier-Stokes equations are introduced from inviscid flux terms. The implicit treatment of artificial dissipation terms results in a block penta-diagonal matrix system and it becomes a scalar penta-diagonal matrix by diagonalization. In steady state equations about fictitious time, a new residual including a real time derivative term is introduced. From a converged solution about fictitious time, a real time unsteady solution can be obtained, which is called 'implicit dual time stepping method'. For code validation, an oscillating flat plate, a regular Karman vortices past a circular cylinder and shock buffeting around a bicircular airfoil problems are numerically solved. And they are compared with a theoretical solution, experiments and other researcher's computations.

The Identification of Generation Mechanism of Noise and Vibrtaion and Transmission Characteristics for Engine System - The Source Identification and Noise Reduction of Compartment by Multidimensional Spectral Analysis and Vector Synthesis Method - (엔진의 소음.진동발생기구 및 전달특성 규명 -다차원해석법과 벡터합성법에 의한 차실소음원 규명 및 소음저감 -)

  • O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1127-1140
    • /
    • 1997
  • With the study for identifying the transmission characteristics of vibration and noise generated by operating engine system of a vehicle, recently many engineers have studied actively the reduction of vibration and noise inducing uncomfortableness to the passenger. In this study, output noise was analyzed by multi-dimensional spectral analysis and vector synthesis method. The multi-dimensional analysis method is very effective in case of identification of primary source, but this method has little effect on suggestion for interior noised reduction. For compensation of this, vector synthesis method was used to obtain effective method for interior noise reduction, after identifying primary source for output noise. In this paper, partial coherence function of each input was calculated to know which input was most coherent to output noise, then with simulation of changes for input magnitude and phase by vector synthesis diagram, the trends of synthesized output vector was obtained. As a result, the change of synthesized output vector could be estimated.

A Study on Motion Acceleration-Deceleration Time to Suppress Residual Vibration of Robot (로봇 잔류 진동 저감을 위한 모션 가감속 시간 설계 연구)

  • Kang, Han Sol;Chung, Seong Youb;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this paper, we proposed a method to determine the acceleration/deceleration time of the motion for reducing the residual vibration caused by the resonance of the robot in the high-speed motion. The relationship between the acceleration/deceleration time and the residual vibration was discussed for the trapezoidal velocity profile by analyzing the time when the jerk happens. The natural frequency of the robot can be estimated in advance through the dynamics simulation. The simulation and experiment for both cases where the moving distance of the robot is long enough and the distance is short, are implemented in the 1-DOF linear robot. Simulation and experimental results show that when the acceleration/deceleration time is a multiple of the vibration period, the settling time and the amplitude of the residual vibration become less than when the time is not a multiple.

Investigation of the pyrolysis of GaN OMVPE precursors by Raman spectroscopy (Raman 분광법에 의한 GaN OMVPE 전구체들의 열분해에 관한 연구)

  • 이순애;김유택;신무환;신건철;박진호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • The temperature profiles of gas phase and the concentration profiles of GaN precursors in an inverted OMVPE reactor have been carried out by in-situ Raman spectroscopy. Pure rotational Raman scattering from the carrier gas (rd) was used to determine the temperature profiles in the reactor, and a large temperature gradient perpendicular the susceptor surface was observed. The homogeneous gas phase decompositions of the OMVPE precursors were investigated by the vibrational Raman spectra, and it was found that the pyrolyses of $NH_3$ and TMGa begin above 800 K and 650 K, respectively, but a noticeable amount of precursors remain undecomposed even in the region very close to the susceptor.

  • PDF

Command Generation Method for High-Speed and Precise Positioning of Positioning Stage (위치결정 스테이지의 고속 정밀 위치결정을 위한 입력성형명령 생성 기법)

  • Jang, Joon-Won;Park, Sang-Won;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.122-129
    • /
    • 2008
  • This paper deals with precise positioning of a high-speed positioning stage without inducing residual vibration by using an input shaping technique. Input shaping is well known to be a very effective tool for suppressing the residual vibration of flexible structures. However, the ordinary input shaping for positioning stages is designated mostly for velocity regulation, not for the residual vibration at the target position. The main difficulties in implementing input shaping along with precise positioning are the time delay caused by the servo system characteristics and the s-curve feature often employed in some motor controllers. This paper analyzes the dynamic responses of a single-mode-dominate stage system subjected to input shaping. A theoretical model is developed io investigate the nature of system. In order to overcome the difficulty, this paper proposes an improved input shaper based on modified command profile generation. The proposed method is proved effective through experiments and simulations.

Dynamic Analysis of Gravity Quay Wall Considering Development of Excess Pore Pressure in Backfill Soil (과잉간극수압 발생을 고려한 중력식 안벽구조물의 동적해석)

  • Ryu, Moo-Sung;Hwang, Jai-Ik;Kim, Sung-Ryul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.39-47
    • /
    • 2010
  • In this paper, a total stress analysis method for gravity quay walls is suggested. The method can evaluate the displacement of the quay walls considering the effect of excess pore pressure developed in backfill soils. This method changes the stiffness of backfill soils according to the expected magnitude of the excess pore pressure. For practical application, evaluation methods are suggested for determining the excess pore pressure ratio developed in the backfill soils and the backfill stiffness that corresponds to the excess pore pressure ratio. This method is important in practical applications because the displacement of the quay walls can be evaluated by using only the basic input properties in the total stress analysis. The applicability of the suggested method was verified by comparing the results of the analysis with the results of 1-g shaking table tests. From the comparison, it was found that the calculated displacements from the suggested method showed good agreement with the measured displacements of the quay walls. It was also found that the excess pore pressure in backfill soils is a governing influence on the dynamic behavior of quay walls.

Zero Placement of the Asymmetric S-curve Profile to Minimize the Residual Vibration (잔류진동 저감을 위한 비대칭 S-curve 프로파일의 영점 배치법)

  • Ha, Chang-Wan;Rew, Keun-Ho;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.308-313
    • /
    • 2012
  • Robust tuning rules of the motion profile are proposed to minimize the residual vibration. For asymmetric S-curve profile, tuning rules are analytically formulated using Laplace-domain approach. When the system modeling is known exactly, by placing a single zero of the motion profile on the pole of the system, the residual vibration can be perfectly eliminated under undamped system. However, if there are some amounts of the modeling errors, the residual vibration significantly increases. To track this issue, the robust tuning rules against modeling error are discussed. One of the proposed robust tuning rules is placing the multiple zeros of the motion profile on the pole of the system, and the other is placing the zeros of the motion profile around the pole of the system. Thanks to the proposed robust tuning rules, motion profile becomes more robust to modeling errors while minimizing the residual vibration. By simulation, the effectiveness of the proposed robust tuning rules is verified.

Numerical Study on Effects of Velocity Profile of Liquid Container on Sloshing (액체 용기의 속도 프로파일이 슬로싱에 미치는 영향 해석)

  • Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.313-319
    • /
    • 2016
  • It is very important to understand and control the sloshing in a liquid container that is partially filled with liquid. Previous studies focused primarily on the sloshing and resonance caused by sinusoidal excitations, while the present study focuses on understanding and suppressing sloshing in a container that moves rapidly from a given point to another in industrial applications. To achieve this, we first numerically predict the two-phase flow induced by the horizontal movement of a rectangular container. Then we analyze the effects of container-velocity profile (in particular acceleration/deceleration duration) on sloshing. Results show that sloshing is significantly suppressed when the acceleration/deceleration duration is a multiple of the 1st-mode natural period of sloshing.

Discretization Effects of Real-Time Input Shaping in Residual Vibration Reduction for Precise XY Stage (정밀 XY 스테이지 잔류진동 억제를 위한 실시간 입력성형에서의 이산화 효과에 관한 연구)

  • Park, Sang-Won;Choi, Hun-Seok;Singhose, William;Hong, Seong-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.71-78
    • /
    • 2007
  • Input shaping is known to be a very effective tool for suppressing residual vibration without introducing any complicated sensors and feedback control. Real-time input shaping schemes necessitate a process such that the input command is discretized to deal with non-prescribed, real-time input. Thus parameters associated with input command discretization, such as time spacing and duration time, are unknowns which affect the performance of input shaping schemes, especially for small and fast XY stages. This paper investigates the effects of input command discretization parameters, such as time spacing and duration time, on the dynamic performance of XY stages subjected to real-time input shaping. An experimental system is developed which is equipped with an XY stage driven by servo-motors and real-time user command. Experiments are performed to investigate the dynamic performance of XY stage by changing these parameters and to yield a strategy to gain better performance.