• Title/Summary/Keyword: 잔류 강도

Search Result 830, Processing Time 0.028 seconds

Investigation of Residual Stress Distributions of Induction Heating Bended Austenitic Stainless Steel (316 Series) Piping (유도 가열 굽힘된 316 계열 오스테나이트 스테인리스 강 배관의 잔류응력 분포 고찰)

  • Kim, Jong Sung;Kim, Kyoung Soo;Oh, Young Jin;Chang, Hyun Young;Park, Heung Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.809-815
    • /
    • 2014
  • The induction heating bending process, which has been recently applied to nuclear piping, can generate residual stresses due to thermomechanical mechanism during the process. This residual stress is one of the crack driving forces that have important effects on crack initiation and propagation. However, previous studies have focused only on geometric shape variations such as the change in thickness and ovality. Moreover, very few studies are available on the effects of process variables on residual stresses. This study investigated the effects of process variables on the residual stress distributions of induction heating bended austenitic stainless steel (316 series) piping using parametric finite element analysis. The results indicated that the heat generation rate and feed velocity have significant effects on the residual stresses whereas the moment and bending angle have insignificant effects.

Effect of Fabrication Processes on the Mechanical Properties of 0.14C-6.5Mn TRIP Steels (0.14C-6.5Mn TRIP강의 기계적 성질에 미치는 제조공정의 영향)

  • Lee, O-Yeon;Ryu, Seong-Il
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.431-437
    • /
    • 2001
  • This research was examined the effect of intercritical heat treatment on the mechanical Properties and retained austenite formation in 0.1C-6.5Mn steels for the development of a high strength high ductility steel. using of transformation induced plasticity due to retained austenite. The stability of retained austenite is very important for the good ductility and it depend on diffusion of carbon and manganese during reverse transformation. It is effective to heat treat at$ 645^{\circ}C$ in order to obtain over 30 vol.% of retained austenite. However, it is more desirable to heat treat at $620^{\circ}C$, considering the volume fraction and mechanical stability of retained austenite. The strength-elongation combination in cold rolled steel sheets after reverse transformed at $620^{\circ}C$ for 1hr was about 4000k9/mm7, but it decreased rapidly with increasing holding time at high temperature due to the decrease of ductility. The addition of 1.1%Si in 0.14C-6.5Mn TRIP steel does not improve the mechanical properties and retained austenite formation.

  • PDF

Re-distribution of Welding Residual Stress Due to Tensile Pre-load and Its Effects on Fatigue Strength in Padding Plate Weldment (Padding plate 용접구조의 인장 정하중 이력에 의한 용접잔류응력 변화 및 피로강도에의 영향)

  • S.W. Kang;Y.W. Kim;W.S. Kim;D.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.75-82
    • /
    • 2001
  • Static loadings on ship structure induced either by water pressure before service such as a tank test and ballasting or by cargo pressure during first laden voyage cause relatively much greater stress than dynamic loadings induced by wave. With these static pre-loadings, the initial residual stresses around welded joint, where fatigue strength is concerned(in most cases, where stress concentration occurs) are expected to be shaken-down in a great extent by the elasto-plastic deformation behavior of material. Therefore, it is more resonable to assess the fatigue strength of ship structure with S-N data which have taken into account the effect of shaken-down residual stresses(re-distributed stresses) on the fatigue strength. In this research work, the re-distribution of residual stresses by the tensile pre-loading is measured using an ordinary sectioning method for specimens of padding plate weldment. Fatigue tests are performed also to evaluate the fatigue strength of the both as-welded and pre-loaded specimens.

  • PDF

Slaking, Swelling and Shear Strength Characteristics of Pohang Mudrocks (포항이암층의 Slaking, 팽창 및 전단강도특성)

  • 이영휘
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.33-42
    • /
    • 1996
  • The weathering of mudrock in the Pohang area is mainly caused by slaking and swelling when the mudrock is absorbed with water. In this regard, this paper chows the results of chemical analysis and the identification of rock-forming minerals from XRD. It also compares the slaking and swelling characteristics of mudrocks sampled from 3 different sites. The chief rock -forming minerals are the quartz, and the several types of clay minerals. The slake durability indices are ranged from 71% to 96%, and these values are closely related to the liquid limit of the powdered nock specimen. In a similar manner to the slaking characteristics the greatest values of the swelling pressure and the swelling strain were measured from the mudrock specimen with the highest value of liquid limit. The greatest measured values of the swelling pressure and the swelling strain are 9.4 kg 1 cm2 and 33.5% respectively. The residual sheer strength of mudrock decreases as the number of wet -diy cycles increases, and the residual strength at 5 cycles are measured to c,=0.24kg/cm2 and p,=28$^{\circ}$. The lowest residual strength is measured at the fresh rock -rock contact surface in the moist condition of which values are cr: 0 and n,: 21.5$^{\circ}$.

  • PDF

Characteristics of Mechanical Properties at Elevated Temperatures and Residual Stresses in Welded joint of SM570-TMC Steel (SM570-TMC 강의 고온 시 기계적 성질 및 용접접합부의 잔류응력 특징)

  • Lee, Chin Hyunng;Chang, Kyong Ho;Park, Hyun Chan;Lee, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.395-403
    • /
    • 2006
  • Recently constructed bridges often have long spans and simple structure details considering not only the function but other important factors such as aesthetics, maintenance, construction duration and life cycle cost. Therefore, bridges require high-performance steels like extra-thick plate steels and thermo-mechanical control process (TMCP) steels. TMCP stels are now gaining wide attention due to their weldability improved strength and toughness. Recently, SM570-TMC steel, which is a high-strength TMCP steel with a tensile strength of 600 MPa, has been developed and applied to steel structures. However, using this steel in building steel structures requires the elucidation of not only material characteristics but also the mechanical characteristic of welded joints. In this study, high-temperature tensile properties of SM570-TMC steel were investigated through the elevated temperature welded joints of SM570-TMC steel were studied through the three-dimensional thermal elasticplastic analyses on the basis of mechanical properties at high temperatures obtained from the experiment.

Evaluation of the Fatigue Life for Carbon/Epoxy Composite Material by the Residual Strength Degradation Analysis (탄소섬유/에폭시 복합재료의 잔류강도 저하해석에 의한 피로수명 평가)

  • 심봉식;성낙원;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1908-1918
    • /
    • 1991
  • Fatigue tests have been carried out to measure the degradation of the residual strength and the fatigue life in carbon/epoxy (0/45/90/-45)$_{2s}$ composite materials. Theoretical predictions of residual strength and fatigue life were compared with experimental results. Distribution characteristics were studied using the probability of failure based on the cumulative distribution function and median rand. The static ultimate strength of carbon/epoxy composites used herein is observed to be relatively higher than that of existing similar composites ; while fatigue life is shorter due to the brittleness of matrix. The fatigue life obtained in these experiments is shorter than that estimated by residual strength degradation model when the stress level above 0.6 For the stress level of 0.6, the experimental value was abruptly increased. The cumulative distribution function for the static ultimate strength is well correlated to that for the strength converted from the measured fatigue life. Also, the predicted distribution of residual strength shows good agreement with the experimental results. Therefore, it is proven that the residual strength degradation model is reasonable.e.

A study on the residual stress at the weld joint of 2.25Cr-1.6W heat resistant steel (보일러용 배관재 2.25Cr-1.6W계 내열강의 용접부 응력 해석)

  • Lee, Y.S.;Lee, K.W.;Lee, J.B.;Kim, Y.D.;Kong, B.W.;Ryu, S.H.;Kim, J.T.;Kim, B.S.;Jang, J.C.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.62-62
    • /
    • 2009
  • 석탄화력발전소의 CO2배출량 감소와 고효율, 대용량화로 인해 초초임계압(USC:Ultra Super Critical) 화력발전소의 건설이 증가하고 있다. USC 발전소는 효율향상을 위한 증기온도와 압력의 상승 때문에 보일러 고온고압부에 기존의 소재에 비해 고온강도와 내산화성의 재료물성이 향상된 신소재 적용이 불가피하다. 특히 사용된 신소재 중에서 보일러 본체를 구성하는 수냉벽관(Water wall), 과열기와, 재열기용 튜브 및 후육부인 헤더와 배관재로 기존의 2.25Cr-1Mo강을 개량한 2.25Cr-1.6W계 내열강이 적용되고 있다. 2.25Cr-1.6W강은 SMI와 MHI가 공동개발한 소재로 1995년 튜브제품이, 1999년에 단조, 파이프재, 플레이트제품이 ASME code case로 등재되었고, 2009년 ASME code case 2199-4로 개정되어 사용 중이다. 이 소재는 2.25Cr-1Mo강에 고온강도 개선을 위해 석출강화효과가 있는 V과 Nb을 첨가하였고, 탄화물의 열적안정성과 고용강화효과 증대를 위해 W을 첨가하였다. 그리고 제작성과 용접성 및 재료의 인성 향상을 위해 B첨가와 C함량을 낮추었다. 합금성분의 첨가와 조정에 의해 고온강도는 개선되었지만, 보일러 설치 및 보수를 위한 용접과정에서 용접금속과 CGHAZ(Coarse Grain HAZ)에서 용접균열이 발생하였다. 대부분의 용접균열은 용접결함이나 고온 혹은 저온균열이 아닌 2.25Cr-1.6W계강의 강도 개선을 위해 첨가한 V과 Nb이 용접후열처리 도중 입내에 MX형태의 미세석출로 입내를 강화시킴으로서 발생한 재열균열 민감성 증대에 기인된 것으로 판단된다. 이에 본 연구에서 용접 및 후열처리 과정에서 용접금속과 HAZ에서 발생하는 용접금속의 응력분포를 전산해석을 통해 확인하고 실제 후육파이프 용접부에서 잔류응력을 측정해 비교하였다. 용접부 응력분포는 SYSWELD 프로그램을 사용해 해석을 수행하였고, 발전소 실배관재의 용접부 응력측정은 수평부 측정이 용이하도록 지그를 부착한 Potable 잔류응력측정기를 사용해 Hole Drilling Method(HDM)를 적용하여 잔류응력을 측정하였다. 해석 결과 CGHAZ부위의 잔류응력이 용접금속과 기타 부위에 비해 높은 응력분포를 나타냈으며, 이는 CGHAZ와 용접용융선 부근에서 균열이 발생하는 실제값과 일치하는 결과를 보였다. 실제 배관재 용접부에서 측정한 잔류응력값은 항복응력의 약 50% 이하 응력값을 나타냈다. 배관 구조에 기인한 시스템응력의 영향을 제거하기 위해 배관재 용접부를 중심으로 양끝단을 절단 후 용접부에서 측정한 응력은 항복응력 대비 25%수준의 낮은값을 보였다. 그러나 배관재가 장기간 고온환경에 노출되었고 용접금속 내부의 균열이 발생한 상태에서 측정하였기 때문에 용접잔류응력은 상당부분 해소되어 상대적으로 낮은 응력값이 얻어진 것으로 판단된다.

  • PDF

An Analytical Review on the Inelastic Region of Column Strength Curve Associated with Residual Stress of Steel Member under Axial Force (강 압축 부재의 잔류응력에 따른 기둥강도곡선의 비탄성영역에 대한 해석적 고찰)

  • See, Sang-Kwang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • This study is the analytical review on the inelastic region of CRC column strength curve. The inelastic region of CRC column strength curve is based on the Bleich theory and the maximum residual stress of $0.5{\sigma}_y$. This is somewhat conservative by considering the fact that the maximum residual stress of $0.3{\sigma}_y$ is well known. This study proposes column strength curve for nonlinear behavior of hot rolled structural steel members under axial force and tangent modulus Et, with the maximum residual stress of $0.3{\sigma}_y$ and compares them with those of CRC. The stress of the inelastic column under axial compression exceeds proportional limits and reaches yielding point before applied load render the column bent. The column strength curve that depends on gradually yielding state of section needs to be reviewed. In this study, it is derived that the critical load formular according to material yielding with the maximum residual stress of $0.5{\sigma}_y$ and compared with CRC column design curve.

A Study on the Characteristics of the Residual Stress Distribution of Steel Structural Members (용접(鎔接) 강구조(鋼構造) 부재(部材)의 잔류응력(殘留應力) 특성(特性)에 관한 연구(研究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.93-101
    • /
    • 1987
  • Residual stresses have remained around welding areas of a steel structure member after welding operation. The major causes to occur these residual stresses are the local heat due to a welding, the heat stresses due to a irregular and rapid cooling condition, the material and rigidity of a steel structure. Ultimatly, these residual stresses have been known to decrease a brittle fracture strength, a fatigue strength, a buckling strength, dynamic properties, and the corrosion resistance of the material. This paper deals with the residual stresses on a steel structure member through experimental studies. SWS 58 plates were welded by the method of X-groove type. These plates were layed on the heat treatment at four different temperatures; $350^{\circ}C$, $500^{\circ}C$, $650^{\circ}C$ and $800^{\circ}C$. The resulting residual Stresses were measured by hole drilling method, and the followings were obtained. The residual stresses on the vicinity of a welding point were relieved most effectively at the temperature of $650^{\circ}C$, and these stresses relieved completly when the ratio of a hole diamerter to a hole depth became unity. Hardness test shows that the higher value of hardness at the heat affected zone dropped to belower as the temperature went up from $350^{\circ}C$ to $800^{\circ}C$. The Welding input heats have not influenced the magnitude of residual stresses at the input heat range between above and below one forth than standard.

  • PDF

Three Dimensional Thermal-Elastic Plastic Analysis of GMAW Considering the Melting of Weld Bead (비드의 용용상태를 고려한 가스메탈 아크용접의 3차원 열탄소성 변형 해석)

  • Jang-Hyun Lee;Jong-Gye Shin;Ji-Hoon Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Welding is essential in ship production since welding is very popular method for joining two or more metals. However, welding causes residual stress and distortion and these give a bad influence to the structure strength and assembly of ship blocks. Therefore, prediction and treatment of residual stress and distortion is a key to accuracy control in shipyard. In this paper, a computational procedure, based on thermal-elastic-plastic 3-dimensional FEA, has been suggested to simulate butt and fillet welding process. In the simulation process, temperature distribution at each time step is obtained by heat transfer analysis and then thermal deformation analysis is done with obtained temperature distributions to find the residual stress and distortion. In heat transfer analysis, enthalpy method is used to realize phase change at melting temperature. Also element birth and death method is used to simulate adding of weld metal in both heat transfer analysis and thermal elastic plastic analysis. The proposed procedure is verified by related researches and the results show good agreement with those of related researches.