• Title/Summary/Keyword: 잔류특성

Search Result 1,603, Processing Time 0.022 seconds

Behaviour of the soil residues of the herbicide quinclorac in the micro-ecosystem (pot) (Micro-ecosystem(pot)중 제초제 quinclorac 토양잔류물의 행적)

  • Ahn, Ki-Chang;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.96-106
    • /
    • 1998
  • Rice plants were grown for 42 days in the specially made micro-ecosystem(pot) containing two different soils treated with fresh and 60-day-aged residues of [$^{14}C$]quinclorac, respectively, to elucidate the behaviour of the herbicide quinclorac residues in the soils. Amounts of $^{14}CO_{2}$ evolved from two soils treated with different residues with and without vegetation were all less than 2.2% of the total $^{14}C$, indicating that there was little microbial degradation of quinclorac in soil. $^{14}C$-Radioactivity absorbed and translocated into rice plants from soil A and B containing fresh quinclorac residues was 8.4 and 24.2%, respectively, of the originally applied $^{14}C$, while 5.5 and 17.7%, in aged residue soils. These results indicate that larger amounts of $^{14}C$ were absorbed by rice plants from soil B with less organic matter and clay than soil A, and the uptake of [$^{14}C$]quinclorac and its degradation products decreased with aging in soil. After 42 days of rice growing, 84.5 and 61.8% of the $^{14}C$ applied freshly to soil A and B, respectively, remained in soil, whereas, in the case of aged soils, 86.3 and 67.7% of the $^{14}C$ applied did. Meanwhile, without vegetation, more than 98.3% of the $^{14}C$ applied, in both fresh and aged residues, remained in soil, suggesting that quinclorac was relatively persistent chemically and microbiologically. Most of the non-extractable soil-bound residues of [$^{14}C$]quinclorac were incorporated into the organic matter and largely distributed in the fulvic acid portion.

  • PDF

Persistence of the Insecticide Clothianidin in Paddy and Upland Soils (논 및 밭토양 중 살충제 Clothianidin의 잔류특성)

  • Choi, Young-Joon;Kwon, Chan-Hyeok;Yun, Tae-Yong;Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.290-297
    • /
    • 2014
  • BACKGROUND: The current study purposed to analyse the dissipation levels of a neonicotinoid insecticide and clothianidin in paddy and upland soils and clarify the effects of soil moisture on degradation and persistence of the insecticide. METHODS AND RESULTS: In order to achieve the research purposes, clothianidin 8% SG was applied to the paddy and upland fields at the rate of 0.024 kg a.i./10a, while the analytical standard was treated at 0.25 mg/kg soil under laboratory conditions. Based on the multiple first-order kinetics, total clothianidin in soils was dissipated with $DT_{50}$ of 6.7-16.1 and 6.9-8.2 days in the paddy and upland fields, respectively, whereas the figures under the laboratory condition became larger showing 56.3 and 19.6 days. CONCLUSION: As affected by soil moisture, some differences in degradative pathways were observed. Flooding of soil caused evidently demethylation and delayed cyclization of a major metabolite, thiazolylmethylguanidine (TMG) and methylaminoimidazole(MAI), compared to the aerobic upland condition. More than 80% and 50% of the parent compound was dissipated by the 24th day after the final application in both soils and, transformation products had constituted most of soil residues after that.

Residual Characteristics and Processing Factors of Environment Friendly Agricultural Material Rotenone in Chilli Pepper (친환경 농자재 rotenone의 홍고추 중 잔류특성 및 가공계수)

  • Noh, Hyun Ho;Lee, Jae Yun;Park, So Hyun;Jeong, Oh Seok;Choi, Ji Hee;Om, Ae Son;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.302-307
    • /
    • 2012
  • This study was carried out to elucidate residual characteristics of environment friendly agricultural material rotenone in chilli pepper and calculate processing factors by drying. The test material was sprayed twice onto chilli peppers at an interval of seven days and then the chilli peppers were harvested at 0, 1, 3, 5 and 7 days after final spray. Limits of quantitation (LOQs) of rotenone in fresh and dried chilli peppers were 0.03 and 0.07 mg/kg, respectively. Recoveries of the test material in fresh and dried chilli peppers ranged from 89.52 to 97.86% and from 85.76 to 91.61%, respectively. As a results of residual material analysis, amounts of rotenone in fresh and dried chilli peppers ranged from 0.03 to 0.39 mg/kg and from 0.07 to 0.75 mg/kg, respectively, representing that the residual amounts of rotenone decreased time-coursely. Processing factors of rotenone in fresh chilli pepper by drying were found to be from 2.03 to 3.13, indicating that the residual concentration of rotenone in dried chilli pepper increased from two to three times by drying. However, the reduction factor of rotenone in fresh chilli pepper by drying ranged from 0.38 to 0.59, representing that some of rotenone in fresh chilli pepper disappeared during the drying process.

Measurement of Uptake Rates of Internal Organs Including Thyroid Gland and Daily Urinary Excretion Rates for Adult Korean Males (한국남자 성인을 대상으로 한 방사성옥소($^{131}I$)의 갑상선 및 각 장기별 잔류율과 소변 일일배설률 측정)

  • Kim, Jung-Hoon;Kim, Hee-Geun;Whang, Joo-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.2
    • /
    • pp.45-50
    • /
    • 2007
  • In this study, uptake rates of internal organs and daily urinary excretion rates were measured to get more reliable estimation results for Korean. Radioactive iodine($^{131}I$) of $100{\mu}Ci$ was administered by ingestion to 28 adult males for the experiment and then the radioactivity in thyroid gland, liver, stomach, small intestine, kidneys, and urine was measured after time intervals of 2, 4, 6 and 24 hours. Uptake rates of each organ and daily urinary excretion rates were calculated on the basis of these experimental results. As a result, uptake rates of 19.70% for thyroid and daily urinary excretion rates of 71.12%, on the average, were indicated. The maximum of uptake rates and daily urinary excretion rates were recorded after 2 hours of administration of $^{131}I$, but those rates were decreased gradually later. It was also found that uptake rates were the highest in stomach, followed by the left kidney, liver, small intestine and right kidney except for thyroid gland. In this experiment, the calculated uptake change rate in thyroid gland after 24 hours of administration of $^{131}I$ was different from that of ICRP-54/67(30%) and ICRP-78(25%). Thus, it is necessary to apply more reliable approach, reflecting the characteristic of Korean physiology and to obtain the basic data of results using this approach for calculation of the internal adsorbed dose. In the future, this approach can be helpful for the internal dose assessment of radiation workers in a nuclear power plant or in a hospital.

Residual Characteristics and Behavior of Azoxystrobin in Ginseng by Cultivation Conditions (인삼 중 azoxystrobin의 재배방법별 잔류특성 및 행적)

  • Lee, Jae Yun;Noh, Hyun Ho;Park, Hyo Kyoung;Kim, Jin Chan;Jeong, Hye Rim;Jin, Me Jee;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 2015
  • To determine residual characteristics of azoxystrobin in ginseng under different cultivation conditions such as use of straw mat on cultivation soil and filling gap between ginseng stem and soil surface and also to elucidate its approximate behavior after spraying, 20% azoxystrobin suspension concentrate solution was sprayed 4 times onto 5-year-old ginseng with 10 days interval at a application rate of about 200 L/10 a and then residues in samples were analyzed. The residue level was lower in case of use of straw mat and filling the gap with soil than in case of no use of straw mat and no filling the gap, representing that use of straw mat and filling the gap with soil were contributed to decrease of pesticide residues in ginseng. A large portion of the test pesticide distributed onto ginseng leaf with a higher specific surface area. The amounts of azoxystrobin residues decreased in ginseng leaf, while increased on soil surface, as close to harvest. About 0.1% of azoxystrobin sprayed was distributed in ginseng root and 12.7-20.4% (mean 16.6%) of azoxystrobin could be decreased for dietary intake by removing of rhizome from ginseng root before intake.

Recovery Process of Aluminum Coagulant by Acidic Extraction of Residual Sludge Produced in Water Treatment (수처리 잔류 Sludge의 산처리에 의한 알루미늄계 응집제 회수 방안)

  • 김동수;표나영;권영식
    • Resources Recycling
    • /
    • v.7 no.1
    • /
    • pp.41-49
    • /
    • 1998
  • This papcr covcrs ihe recovery process of aluminum coagulant by acidic exlraclion which can develop the dewaterability'of residual sludge solids and ihc reduclion ot sludge valumc and mass. Simultmeously, variables affecting acidic extaction of aluminum arc discussed It is represented that the characteristics of recovcrcd coagulant is assessed mth rcspcct to aluminum content. coagulalion effeaiveness, and trace contaminants. The treatment methods of residual sludge solid following acidic extraction arc also d~scussed. Fillally, we suggest some cases in which the results from laboratory can he applied to the fullscale operation and future domestic mosoect of it.

  • PDF

Residues of a New Fungicide, KNF 1002 in Cucumber and Pepper (신규 살균제 KNF 1002의 오이 및 고추 중 잔류특성)

  • Kim, Tae-Hwa;Lee, Jae-Yeong;Yu, Yong-Man;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.227-232
    • /
    • 2003
  • This study was conducted to evaluate the terminal residue of a new fungicide, KNF 1002, in cucumber and pepper under greenhouse and field conditions. When a microemulsion formulation (20%) of KNF 1002 was applied once or twice during $1{\sim}7$ days before harvest, its terminal residue in cucumber ranged <$0.02{\sim}0.20\;mg/kg$ under greenhouse condition. In pepper, its figure recorded $0.31{\sim}0.79\;mg/kg$ and $0.11{\sim}0.28\;mg/kg$ under greenhouse and field conditions, respectively. Much higher level of terminal residues was observed in leaves than those in fruits in pepper, showing $7.38{\sim}25.20\;mg/kg$ and $0.11{\sim}1.99\;mg/kg$ under greenhouse and field conditions, respectively. Cultivation condition affected evidently the residue level in pepper harvests. Residual pattern of KNF 1002 seemed to be comparable to strobilurin fungicides currently used.

Occurrence of Residual Pharmaceuticals and Fate, Residue and Toxic Effect in Drinking Water Resources (상수원에서의 잔류 의약물질 검출, 거동, 분포 현황 및 독성)

  • Son, Hee-Jong;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.453-479
    • /
    • 2011
  • Residual pharmaceutical compounds have been recognized as emerging environmental pollutants and are widely distributed all over the world. These compounds cause bioaccumulation and biomagnification during present for a long time in the environment: thereby after adversely biota and human bodies. It is difficult to remove residual pharmaceutical compounds using conventional water/wastewater treatment because of resistant property to photodegradation, biodegradation and chemical decomposition. Moreover, domestic literature data on the pollution of residual pharmaceutical compounds in rivers and lakes are limited. In this paper, species, sources, fate and risk of residual pharmaceutical compounds as well as behavior properties in freshwater resources are demonstrated to encourage the domestic concern about residual pharmaceutical compounds. An extensive review of existing data in the form of figures and tables, encompassing many therapeutic classes are presented.

Fracture Mechanics Analysis of a Crack in the Weld using the J-integral (J-적분을 이용한 용접접합부 균열의 파괴 역학적 해석)

  • Chang, Kyong Ho;Lee, Chin Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.243-251
    • /
    • 2005
  • The fracture mechanics analysis of a crack in a weld must consider residual stress generated during welding. The standard definition of the J-integral requires a path dependent value in the presence of a residual stress field. Therefore, it is necessary to develop a path independent J-integral definition for a crack in a residual stress field. This paper addresses the modification of the Rice-J-integral to produce a path- independent J-integral when residual stresses and external forces are present. The residual stress problem is treated as an initial strain problem and the J-integral proposed for this type of problems is used. A program which can evaluate the J-integral for a crack in a weld is developed using the proposed J-integral definition. The situation when only residual stress is present is examined as is the case when mechanical stresses are applied in conjunction with a residual stress.

Residual Stress Distribution on the Fillet Weldment used by Finite Element Method (유한요소법을 이용한 필렛용접 이음부의 잔류응력분포)

  • Kim, Hyun Sung;Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.197-207
    • /
    • 2000
  • A transient heat transfer analysis and thermo-elastic analysis have been performed for the residual stress distribution on the fillet weldment used by finite element method. Specimen is fabricated single-pass fillet welding. This computation was performed for conditions including surface heat flux and temperature dependent thermo-physical properties using by heat input as parameter. Also, cut-off temperature of residual stress estimation by thermo-elastic analysis is determined. The fillet weldment were measured to determined their residual stress distributions for using hole-drilling method. As result, it was found that large tensile residual stress is about material yield strength, and the numerical simulation results for finite element method similar to residual stresses by hole-drilling method and other exiting research. Also, cut-off temperature is effectively determined by temperature which calculated maximum thermal stress equal to material yield strength.

  • PDF