• Title/Summary/Keyword: 잔교

Search Result 66, Processing Time 0.023 seconds

Evaluation of Structural Safety about the Bending and Torsion of Superstructure of the Fish-bone Girder Pier (경골잔교 상부구조의 휨 및 비틀림에 대한 구조 안전성 검토)

  • Ham, Gyu-Sung;Lim, Nam-Hyoung;Park, Jong-Sup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2000-2005
    • /
    • 2013
  • In this paper, the design load acting on a main girder(spine girder) of fish-bone girder pier is proposed. In order to check the structural safety, numerical analyses using finite element program ABAQUS are performed. It is found that the main girder is affected by a torsional behavior as well as a bending behavior and the major influence loading is the torsional loading. Also, from the stress evaluation of the chosen cross section of the main girder, chosen fish-bone girder pier is structurally safe.

Evaluation of Seismic Performance for Various Types of Pile Head of Landing Pier (잔교식 안벽에서 말뚝 두부형식에 따른 내진성능 평가)

  • Jang In-Sung;Kwon O-Soon;Park Woo-Sun;Jeong Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.70-79
    • /
    • 2005
  • Most of landing piers in Korea employ the combination of vertical piles and batter piles, which shows good efficiency in static lateral resistance but poor seismic performance. Many attempts have continuously been made to increase the seismic performance of batter piles with various aseismatic systems. In this study, new types of aseismatic system were developed by use of rubber and ball bearing, and shaking table tests and 3 dim. numerical analyses were performed in order to compare the seismic performance for various types of pile head. The test and numerical analysis results show the high seismic performance of newly proposed systems and the applicability off dim. numerical analysis considering the non-linear behaviour of rubber and ball bearing systems.

Evaluation of Seismic Performance of Takahama Wharf Using Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 Takahama 잔교식 안벽의 내진성능 평가)

  • Tran, Nghiem Xuan;Lee, Jin-sun;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2017
  • Aseismic designs of pile-supported wharves are commonly performed utilizing simplified dynamic analyses, such as multi-mode spectral analyses. Simplified analyses can be useful for evaluating the limit state of structures. However, several pile-supported wharves, that have been damaged during past earthquakes, have shown that soil deformation and soil-pile dynamic interaction significantly affect the entire behavior of structures. Such behavior can be captured by performing nonlinear effective stress analyses, which can properly consider the dynamic interactions among the soil-pile-structure. The present study attempts to investigate the earthquake performance of a pile-supported wharf utilizing a three-dimensional numerical method. The damaged pile-supported wharf at the Kobe Port during the Hyogo-ken Nambu earthquake (1995) is selected to verify the applicability of the numerical modeling. Analysis results showed a suitable agreement with the observations on the damaged wharf, and the significant effect of excess pore pressure development and pile-soil dynamic interaction on the seismic performance of the wharf.

An Experimental Study on the Effects of Perforated Floating Structures and Submerged Plates for Wave Control and Motion Reduction of Pile-Moored Floating Piers (말뚝계류 부잔교의 파랑제어 및 동요저감을 위한 유공구조 부유체와 몰수판 효과에 관한 실험적 연구)

  • Chae-Won Kwon;Su-Young Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.3
    • /
    • pp.116-127
    • /
    • 2024
  • The floating pier is a representative type of floating structure installed along the coast, primarily used as a facility for berthing and mooring ships. Additionally, ongoing attempts have been made to utilize it for various purposes, such as wave control and wave energy conversion structures. In this study, we experimentally investigated the reflection and motion characteristics of a pile-moored floating pier, which allows heave and limited roll motion, with respect to the presence of perforated structures and the attachment of submerged plates. The hydraulic experiment results indicated that the reflection and motion characteristics of the pile-moored floating pier were significantly influenced by the presence and installation depth of the submerged plates, rather than the presence of perforated structures on the floating body. In particular, the installation of submerged plates increased the reflection coefficient in short-period waves and effectively reduced the heave and roll motions of the floating body.

Analysis of Seawater Transport based on Field Measurements at Pier-bridge between Busan New-port and the Nakdong River Estuary (부산 신항-낙동강 하구역 연결잔교부의 물질수송 해석(I) - 현장조사를 통한 잔교부 해수소통량 평가 -)

  • Lee, Young-Bok;Tawaret, Attapon;Kim, Heon-Tae;Yoon, Han-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.189-195
    • /
    • 2008
  • This study analyzed the characteristics of sea water transport between Busan New-port and the Nakdong River estuary. A current meter was placed on a pier bridge and the current velocity was analyzed to determine the flow direction. Water temperature, salinity, turbidity, and tide were also measured to determine the characteristics of sea water and to describe the tidal current between the two regions. The results indicated that the dominant outflow direction of the ebb tidal current was from the Nakdong River estuary to Busan New-port. Conversely, during a flood tide, the dominant direction was from Busan New-port to the Nakdong River estuary. The maximum current speed during the first and second field measurements was about 13.18 and 30.80 cm/ sec, respectively. During the first field measurement, the total volume of sea water transport was $184.71\;m^3/sec$ and the residual volume transport was $+59.74\;m^3/sec$. By contrast, during the second field measurement, the respective values were $331.15\;m^3/sec$ and $28.88\;m^3/sec$.

  • PDF

Structural Performance Evaluation of Offshore Modular Pier Connection using Ultra-high Performance Concrete (초고성능 콘크리트를 활용한 해상 모듈러 잔교 연결부의 구조성능 평가)

  • Lee, Dong-Ha;Kim, Kyong-Chul;Kang, Jae-Yoon;Ryu, Gum-Sung;Koh, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.351-357
    • /
    • 2022
  • In this study, offshore modular pier system using the ultra-high performance concrete was developed for the offshore construction environment. For the application of offshore modular pier system, the design, fabrication, and construction performance evaluation were performed using ultra-high performance concrete a compressive strength 120 MPa or more and a direct tensile strength 7 MPa or more. For offshore piers previously constructed with precast concrete, it was intended to verify the idea and possibility of solving errors due to position or vertical deformation during the driving of the foundation pile part during the construction stage. Furthermore, a offshore modular pier system was fabricated with ultra-high performance concrete for the construction performance evaluation. The results showed that a offshore modular pier system secured about 9 % of sectional performance of load bearing capacity under ultimate load conditions. If the offshore modular pier system developed through this study is utilized in the future, it is judged that competitiveness due to sufficient durability and constructability can be secured.

Evaluation of Seismic Performance of Pile-supported Wharves Installed in Saturated Sand through Response Spectrum Analysis and Dynamic Centrifuge Model Test (동적원심모형실험 및 응답스펙트럼해석을 통한 포화지반에 관입된 잔교식 안벽의 내진성능 평가)

  • Yun, Jung-Won;Han, Jin-Tae;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.73-87
    • /
    • 2021
  • Pile-supported wharf is a structure that can transmit and receive cargo, and it is mainly installed on saturated inclined ground. In the seismic design of these structures, the codes suggest using the response spectrum analysis method as a preliminary design method. However, guideline on modeling method for pile-supported wharf installed in saturated soil is lacking. Therefore, in this study, the dynamic centrifuge model test and response spectrum analysis were performed to evaluate the seismic performance of pile-supported wharf installed into the saturated soil. For the test, some sections (3×3 pile group) among the pile-supported wharf were selected, and they were classified into two model (dry and saturated sand model). Then the response spectrum analysis was performed by using the soil spring method to the test model. As a result of test and analysis, the m om ent difference occurred within a m axim um of 51% in the dry sand m odel and the saturated sand model where liquefaction does not occur, and it was found that the pile moment by depth was properly simulated. Therefore, in the case of these models, it is appropriate to perform the modeling using the Terzaghi (1955) constant of horizontal subgrade reaction (nh)

Seismic Performance of Landing Pier with Batter Pile (경사말뚝이 있는 잔교식 안벽의 내진 성능 평가)

  • 권오순;장인성;박우선
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.92-99
    • /
    • 2002
  • 1995년 일본 고베지진 이후 우리나라에서도 지진에 대한 연구가 활발히 이루어지고 있으며, 현재 국내 여러 기간시설에 대한 내진안전성 평가와 내진설계가 실시되고 있다. 국내 기존 항만시설에 대해서도 내진 안정성 평가가 수행되고 있으며 현재계획ㆍ시공되고 있는 항만에서도 내진설계가 반영되고 있다. 중요한 항만시설물 중 하나인 잔교식 안벽은 연직말뚝과 경사말쪽을 조합하여 사용하고 있으나, 최근 내진설계에서 경사말뚝이 지진과 같은 동적 하중에 취약하다는 이유로 사용에 제한을 받고 있다. (중략)

  • PDF

한(韓)·호(豪) 항만구조물 설계기준 비교 - 잔교식 안벽을 중심으로

  • Byeon, Gi-Jun;Gang, Gyu-Won;Han, Gwang-Pil
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.76-77
    • /
    • 2018
  • 해외 입찰 시 각 나라에서 적용하고 있는 설계기준의 이해 정도는 적정 설계 물량 산출은 물론 시공성, 공사비 등에 영향을 미쳐 프로젝트 수주 및 수행 성공여부에 매우 중요한 요소로 작용한다. 본 자료는 잔교식 안벽의 해외 입찰설계 단계에서 주요 단면 결정을 위한 주요 설계기준 항목에 대해 호주와 한국의 항만구조물 설계기준을 비교하여 호주 프로젝트를 추진하는 엔지니어에게 도움이 되고자 한다.

  • PDF

Design Consideration of Fish-bone Girder Pier using the Analysis of Torsional Behavior (조립식 경골잔교(Fish-bone Girder Pier)의 비틀림 거동분석을 통한 설계 시 고려사항)

  • Yun, Kyung-Min;Yoon, Ki-Yong;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.561-568
    • /
    • 2014
  • A modular fish-bone girder pier consists of one main girder system named as "Spine Girder". Therefore, this pier can be most affected by torsion as well as flexural bending. The design considerations of the fish-bone girder pier are proposed to assure the reasonable design in this study. In order to investigate the behavior characteristics, structural analysis F.E model is developed, and the verification of the developed model is performed by comparison with experimental data. From the investigation of the structural behavior, the vertical stiffener is required at the bottom of bone-beams to prevent the excessive local stress. Also, it is found that the normal stress of the flange and the shear stress of the web and flange are dominantly affected by the warping torsion and pure torsion, respectively.