• Title/Summary/Keyword: 잔골재율

Search Result 214, Processing Time 0.027 seconds

The Bond Behavior between Deformed bars and Recycled Fine Aggregate Concrete according to Bar Position. (철근 위치에 따른 이형철근과 순환잔골재 콘크리트의 부착거동)

  • You, Young-Chan;Jang, Yong-Heon;Lee, Min-Jung;Yun, Hyun-Do;Choi, Ki-Sun;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1089-1092
    • /
    • 2008
  • The bond behavior between concrete and reinforcement is a important requirement for reinforced concrete constructions. For practical application, it is very important to study bond behavior of reinforcing bars in recycled fine aggregate concrete. Therefore, pull-out test in order to investigate the bond behavior between recycled fine aggregate concrete and deformed bars was performed. Recycled fine aggregate concrete replacement ratios (i.e., 0% and 100%) and positions of deformed bars (i.e., vertical and horizontal position) were considered as variables in this study. Test results were compared with the bond strength requirement recommended by CEB-FIP code. Based on the test results, It was found that the bond strength between the recycled fine aggregate concrete and deformed bars were influenced by both recycled fine aggregate concrete replacement ratios and positions of deformed bars. The reduction of bonded area at the soffit of horizontal reinforcement caused by concrete bleeding was observed in H type specimen. So, Only V type and HB specimen satisfied the bond strength requirement recommended by CEB-FIP code.

  • PDF

The Experimental Study on the Properties on Concrete to use the Electric Arc Furnance Slag as Fine Aggregate (전기로슬래그 잔골재를 사용한 콘크리트의 기초물성에 관한 실험적 연구)

  • Choi, Sung-Woo;Kim, Jeong-Sik;Jeun, Jun-Young;Kim, Eun-Kyum;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.389-392
    • /
    • 2008
  • Electric-furnace-slag has the expansion, due to the reaction with water and free Cao. So compared with the blast-furnace-slag, the recycling range of EFS is subject to restriction. But the expansive reaction of EFS is removed, the it is possible to use aggregate for concrete. This study is the basic properties of concrete to used stabilized EFS(oxidized EFS). The EFS is used fine aggregate in concrete, and replaced by sea-sand(natural sand). The replacement ratio are 0%, 25%, 50%, 75%, 100%. The result of study, to used oxidized EFS-sand, the flowability and the compressive strength is increased. Also it is possible to reduce the Bleeding. It is necessary more study about using the EFS aggregate, like the durability, the mechanical property for concrete

  • PDF

Application of Discoll Method to Blend Fine Aggregate for Concrete (콘크리트용 잔골재 혼합을 위한 Driscoll 방법의 적용)

  • Lee, Seong Haeng;Ham, Hyeong Gil;Kim, Tae Wan;Oh, Yong Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2011
  • Recently depletion of natural resources makes a deficiency of sand aggregation in the concrete works. In this study, the quality characteristics of concrete and aggregate according to blending fine aggregate in the river sand and the crash sand was analyzed by Normal method and Driscoll method which has used mixing of fine aggregate for asphalt mostly. Application of Discoll method to blend fine aggregate for concrete was studied in the first step to blend fine aggregates concrete. The fineness modulus, grading, slump, air content and compressive strength were tested by the two method, the results of Driscoll method was very similar to degree of err limits in comparison with those of Normal method in the same condition. As a result, Driscoll method is reasonable to use the fine aggregates mixture for concrete in river sand and crash sand.

Effect of Recycled Fine Aggregate Quality on Strength Properties of Concrete (순환잔골재 품질에 따른 콘크리트의 강도특성)

  • Jeon, Esther;Yun, Hyun-Do;Jang, Yong-Heon;Choi, Ki-Sun;Bae, Kee-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.609-612
    • /
    • 2008
  • This study investigated effect of recycled fine aggregate quality on strength properties of concrete. Some investigations have been carried out to study the strength properties of recycled aggregate concrete. But these have some limitation due to small-scale test in the laboratory. Therefore concrete using this study were fabricated by ready-mix concrete. Variables were quality of recycled fine aggregate(high and low quality) and replacement ratio of 0%, 30%, 60%, 100%(high quality), 35, 70%(low quality). The change of air content of recycled aggregate concrete were similar to natural aggregate concrete. Replacement ratio of recycled aggregate was not necessarily correlated with compressive strength and modulus of rupture of recycled aggregate concrete.

  • PDF

A Fundamental study on the Fluidity properties of Normal concrete using Fine aggregate with Rapidly cooled Electric arc furnace oxidizing slag (급냉 전기로 산화슬래그잔골재를 사용한 일반콘크리트의 유동특성에 관한기초적 연구)

  • Han, Sang-Il;Lee, Won-Young;Park, Hyo-Jin;Choi, Hoon-Gook;Kwak, Eun-Gu;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.333-334
    • /
    • 2009
  • This study was investigated the fluidity properties of Normal concrete using Fine aggregate with Rapidly cooled Electric arc furnace oxidizing slag.

  • PDF

An Experimental Study on Compressive Strength and the Chloride Content of Concrete with Substitution Ratio of Recycled Fine Aggregate and Limestone Power (순환잔골재 및 석회석 미분말 치환율에 따른 콘크리트 강도와 염화물량에 관한 실험적 연구)

  • Lee, Soo-Hyung;Kong, Tae-Woong;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.597-600
    • /
    • 2008
  • Correspond in chloride content increase by sea sand uses of bad quality using recycled fine aggregate in this research. together, examined basic properties of matter for activation of been using recycled fine aggregate use definitely. Also, super fundamental principles that is shortcoming that blast furnace slag differential speech has prevents problem of decline and change of countenance limestone power differential speech by purpose to contribute in early age strength as Filler role special quality examine. As experiment result, compressive strength at recycled fine aggregate 10%, limestone power 20% metathesis the highest compressive strength value appear, According to recycled fine aggregate metathesis rate increase, the chloride content reduced by 0.127 ㎏/m$^3$s(metathesis rate 0%), 0.119 ㎏/m$^3$s (metathesis rate 10%), 0.112 ㎏/m$^3$s (metathesis rate l20%), 0.097 ㎏/m$^3$s (metathesis rate 30%).

  • PDF

An Experimental Study on the Estimation of Compressive Strength and the Physical Properties of Recycled Aggregate Concrete of Fixed Slump (슬럼프 고정 순환골재콘크리트의 물리적 특성 및 압축강도 추정에 관한 실험적 연구)

  • Kim, Sang-Heon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • This study was a basic research for actual production of recycled aggregate concrete, and experiments were carried out on the change of water cement ratio and physical properties of recycled aggregate concrete with fixed slump. Results were as follows. Concrete using recycled aggregate were required increased water to maintain the target slump, and the recycled fine aggregate are necessary more increased water more than the recycled coarse aggregate. The replacement ratio of recycled fine aggregate be less than 60%, would be possible to obtain the air content volume that did not deviate from the concrete quality specification. The compressive strength of concrete using recycled aggregate decreased with increasing the replacement of recycled aggregate, and compressive strength decreased by 25% when 100% recycled fine aggregate were replaced. As a result of analyzing the correlation of compressive strength according to the mixing factors of concrete, it was found that replacement of recycled fine aggregate> water cement ratio> air content volume were influenced in order.

Influence of the Fine and Coarse Aggregate on the Fluidity of High Flowing Concrete (고유동콘크리트의 유동특성에 미치는 잔골재 및 굵은골재의 영향)

  • 김규용;이정율;박선규;정하선;이석홍;손영현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.301-306
    • /
    • 1998
  • Aggregate as the component of High Flowing Concrete has much influence on the properties of High Flowing Concrete according to the quality and condition because the aggregate occupy a lot of concrete volume. The shape and size of aggregate affect a lot spatial passibility and fillingability. The segregation is easy to occur when the rate of Fine aggregate is high so that Fluidity is much affected by aggregate factor. In this study, therefore, we try to understand the various fluidity according to the fine aggregate of standard grade rang, the size of Coarse aggregate and the rate of fine aggregate to confirm the manufacturing possibility of High Flowing Concrete by examination on the influence of fresh state of high flowing concrete such as flowability, reinforcement passibility, fillingability, segregation resistance.

  • PDF

Recycling of Chilled Converter Slag as Aggregate in Cement Mortar (급랭 진로슬래그 모르타르 골재 재활용 특성)

  • Kim, Tae Heui;Park, Kyung Bong
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.238-243
    • /
    • 2006
  • The aggregate properties of chilled converter slag reformed by atomizing liquid converter slag were investigated. The properties of mortars with various replacement of standard sand by chilled converter slag as recycled fine aggregates were investigated. The particle shape of chilled converter slag by atomizing was a sphere with an open cavity which is enclosed with two layers like a bored coconut. Specific gravity, unit weight and fineness modulus increased with increasing the replacement, and solid content had the maximum at the replacement of 75% and water absorption rate had the minimum at the replacement. The hardened mortars with higher replacements have the higher specific gravity and the denser texture.

  • PDF

Effects of Aggregate Grading on the Performance of High-Flowing Concrete with General Strength (일반 강도용 고유동 콘크리트에서의 골재 입도 영향)

  • Kim, Sang Chel;Kim, Yun Tae;Shin, Dong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.63-72
    • /
    • 2012
  • The high-flowing concrete requires additionally or excessively more expensive admixture than conventional concrete. So, the concrete has not to be widely used in practical field due to the increase of production price, need of additional facilities, and excessive development of concrete strength in associate with addition of too much cementitious material even though it has more significant advantages than conventional concrete. Thus, this study aims at developing high-flowing concrete with general strength unlike high strength which has been carried out in conventional study. To observe the role of aggregate in the concrete quantitatively and to increase the performance of high-flowing concrete effectively, parametric studies were carried out such as W/C, s/a, fineness modulus of aggregate, contribution degree of particle sizes, and the effect of 13mm aggregate and fine stone powder as a partial replacement of aggregates. And the effect of these factors on performance of the concrete was evaluated by measuring slump-flow and gap of penetration height in U-typed instrument. As a result, it was found that flowability of high-flowing concrete depends upon grading of fine aggregate more significantly than that of coarse aggregate and is enhanced greatly as fineness modulus of fine aggregate decreases and the value of s/a increases. In addition, the application of 13mm aggregate and fine stone powder are expected as a partial replacement of aggregate in order to increase the performance of high-flowing concrete more effectively.