• Title/Summary/Keyword: 작물생육억제미생물

Search Result 24, Processing Time 0.029 seconds

Selction of Useful Chemicals Reducing Soybean -Sprout Rot (콩나물 부패경감에 유용한 약제 선발)

  • 박의호;최연식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.4
    • /
    • pp.487-493
    • /
    • 1995
  • This study was carried out to select useful chemicals to control pathogens inciting soybean-sprout rot. Pathogen strains were isolated from decaying soybean seedlings. The isolated strains were identified as Pseudomonas spp. (Pse. strains) through microbiological test, however, no rot-inciting fungus was isolated. Eight food additives were tested with different concentrations in controlling pathogens and harmfulness. Five chemicals(over 5% cone.) including sodium hypochlorite apparently inhibited the growth of Pse. strains on media plate, however, sodium hypochlorite was discarded due to its severe germination inhibition. Propionic acid and acetic acid inhibited the growth of Pse. strains more effectively than calcium propionate and sodium propionate relatively. As no harmful effect on seed germination and no growth retard of soybean sprouts were observed by those chemicals with lower concentration(0.5∼1.0%), these chemicals were considered to be applicable to sprout rot control judged by the effectiveness and permissible concentration as food additives.

  • PDF

Biological Control of Plant Pathogen by Pmdornonas sp. (Pseudomondas sp.에 의한 채소병원균의 생물학적 억제)

  • 김교창;김홍수;도대홍;조제민
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.263-270
    • /
    • 1992
  • For the selection of powerful antagonistic bacterium for biological control of soil borne Eminia carotovora subsp. carotovora causing rot of vegetable, excellent strains (S4, S14, 565) were selected from 1,196 strains of bacteria which were isolated from rhizosphere in vegetable root rot-suppresive soil. Strains were identified to be Pseudomonas species with Api 20NE kit. Antagonistic substance was produced in 523 synthetic broth medium at pH 7~8 and $30^{\circ}C$ during 3 days culture. The substance was stable in the pH range of 6 to 9. When the basal medium was supplemented with mannitol and sorbitol as carbon source and calcium chloride as metal salt, the production of the inhibitory substance was increased. The inhibitory acitivity was increased by the addition of fertilizer in soil. The isolated strains were resistant to the agricultural chemical such as benomyl and fosethyl-Al-folpet, and the antibiotics such as penicillin and lincomycin. We had found that Pseudomonas sp. S14 strain had a single plasmid. After treated with acridin orange for curing, we confirmed the existence of antagonistic gene in the chromosomal DNA.

  • PDF

Isolation and Optimal Culture Conditions of Brevibacillus sp. KMU-391 against Black Root Pathogens Caused by Didymella bryoniae (덩굴마름병원균인 Didymella bryoniae의 생물학적 방제를 위한 길항세균의 분리 및 특성)

  • Park Sung-Min;Jung Hyuck-Jun;Kim Hyun-Soo;Yu Tae-Shick
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.135-141
    • /
    • 2006
  • We isolated a bacterium which produces antifungal substances from the Sanktpeterburg soils at Russia. The iso-lated strain was identified as Brevibacillus sp. and shown a strong antifungal activity on plant pathogenic fungi. Brevibacillus sp. KMU-391 produced maximum level of antifungal substances under incubation aerobically at $30^{\circ}C$ for 48 hours in trypticase soybean broth containing 1.0% sucrose and 1.0% polypeptone at 180 rpm and initiated pH adjusted to 7.0. Precipitate of culture broth by $30{\sim}60%$ ammonium sulfate precipitation exhibited strong antifungal activity against Didymella bryoniae by dry cell weight. Butanol extract of cultured broth also shown fungal growth inhibitory activity against Botrytis cinerea KACC 40573, Botrytis fabae KACC 40962, Colletotrichum gloeosporioides KACC 40804, Colletotrichum orbiculare KACC 40808, Didymella bryoniae KACC 40669, Fusarium graminearum KACC 41040, Fusarium oxysporum KACC 40037, Fusarium oxysporum KACC 40052, Fusarium oxysporum f, sp. radicis-Iycopersici KACC 40537, Fusarium oxysporum KACC 40902, Monosporascus cannonballus KACC 40940, Phytophthora camvibora KACC 40160, Rhizoctonia solani AG-1(IA) KACC 40101, Rhizoctonia solani AG-4 KACC 40142, and Scleotinia scleotiorum KACC 41065 by agar diffusion method.

In Vitro Quantum Dot LED to Inhibit the Growth of Major Pathogenic Fungi and Bacteria in Lettuce (Quantum Dot LED를 이용한 상추 주요 병원성 곰팡이 및 세균의 생장억제효과 기내실험)

  • Lee, Hyun-Goo;Kim, Sang-Woo;Adhikari, Mahesh;Gurung, Sun Kumar;Bazie, Setu;Kosol, San;Gwon, Byeong-Heon;Ju, Han-Jun;Ko, Young-Wook;Kim, Yong-Duk;Yoo, Yong-Whan;Park, Tae-Hee;Shin, Jung-Chul;Kim, Min-Ha;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.114-123
    • /
    • 2019
  • QD LED has an ideal light source for growing crops and can also be used to control plant pathogenic microorganisms. The mycelial growth inhibition effect of QD LED light on Rhizoctonia solani, Phytophthora drechsleri, Sclerotinia sclerotiorum, Sclerotinia minor, Botrytis cinerea, Fusarium oxysporum, Pectobacterium carotovorum, and Xanthomonas campestris were investigated. According to the results, BLUE (450 nm) light, suppressed S. sclerotiorum by 16.7% at 50 cm height from the light source, and 94.1% mycelial growth at 30 cm height. Mycelial growth of Sclerotinia minor was inhibited by 80.4% at 50 cm height and 36.3% at 50 cm height in B. cinerea. S. minor, and B. cinerea was inhibited by 100% mycelial growth at a height of 30 cm from the light source. At 15 cm height, all three pathogens (B. cinerea, S. minor, and S. sclerotiorum) was inhibited by 100%. QD RED (M1) and QD RED (M2) light suppressed mycelial growth of S. minor and B. cinerea by 100% at 30 cm and 15 cm height from the light source. For S. sclerotiorum, QD RED (M1) and QD RED (M2) showed 75.2% and 100% inhibition, respectively. Further experiment was conducted to know the suppression effect of lights after inoculating the fungal pathogens on lettuce crop. According to the results, QD RED (M2) suppressed the S. sclerotiorum by 59.9%. In addition, Blue (450 nm), QD RED (M1), and QD RED (M2) light reduce the infestation by 59.9%. In case of B. cinerea, disease reduction was found 84% by BLUE (450 nm) light. Results suggest that the growth inhibition of mycelium increases by Quantum dot LED light.

Growth Promotion and Induction of Systemic Resistance Against Phytophthora capsici on Red-pepper Plant by Treatment of Trichoderma harzianum MPA167 (근권 Trichoderma harzianum MPA167 처리에 의한 생육촉진과 고추 역병균에 대한 고추의 유도저항성)

  • Yang, Nuri;Lee, Sae Won;Kim, Heung Tae;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.394-401
    • /
    • 2013
  • Trichoderma harzianum is one of rhizosphere fungus usually lives near the plant root regions in the soil. T. harzianum plays an important role in plant growth promotion and increases disease resistance against various plant pathogens on crops. In this study, the strain T. harzianum MPA167 was isolated from the barley rhizosphere soil in Suwon, Korea. Among 183 isolates, the strain T. harzianum MPA167 was selected as promising strain in which based on hyperparasitical activity against Phytophthora capsici and estimated disease control activity against P. capsici in the greenhouse conditions. The strain T. harzianum MPA167 was identified using 23s rDNA internal transcribed spacer(ITS) region sequences. MPA167 treatment ($1{\times}10^6$ spores/ml) showed greater disease suppression against Phytophthora blight of red-pepper caused by P. capsici in greenhouse compared with the water-treated control. Volatiles derived from T. harzianum MPA167 elicit growth promotion of tobacco and Arabidopsis seedlings in I-plate assay. In addition, T. harzianum MPA167 strain was also found to be effective for the growth promotion and induction of systemic resistance on red-papper plant. These results suggest that MPA167 might be used as one of the potential biocontrol agents.

Optimization of Culture Condition for the Hydrocinnamic Acid Production from Bacillus subtilis IJ-31 (Bacillus subtilis IJ-31에서 Hydrocinnamic Acid 생산을 위한 최적배양조건)

  • Joo, Gil-Jae;Kim, Young-Mog;Lee, Oh-Seuk;Kim, Joung-Woong;Kim, Won-Chan;Song, Kyung-Sik;Yoon, Sung-Joon;Kim, Jin-Ho;Rhee, In-Koo
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.207-211
    • /
    • 2005
  • The metabolites released from cultures of rhizosphere bacteria can inhibit plant growth. Bacillus subtilis IJ-31 inhibited plant growth by the production of hydrocinnamic acid (HCA). The production of HCA by plant-growth inhibiting rhizobacterium B. subtilis IJ-31 was optimized. $90.5\;{\mu}g/ml$ of HCA was obtained under the condition of 1% rice bran as carbon source, 0.5% tryptone as nitrogen source, 0.1% $ZnCl_2$ as metal source at $37^{\circ}C$ for 60 h (pH 7.0). The optimal condition for the HCA production by B. subtilis IJ-31 in the jar fermenter was established using response surface methodology (RSM) of statistical analysis system(SAS) program. The production of HCA by B. subtilis IJ-31 in the jar fermenter culture reached $102.99\;{\mu}g/ml$ when 2.24% soil extracts was added and agitation speed was 290 rpm under the same condition. And the experimental value of HCA production is $102.5\;{\mu}g/ml$ in the same culture condition. The production of HCA by B. subtilis IJ-31 is higher as 12% than that from the flask culture.

Screening for Inhibition Activity of Plant Extracts on Microorganism Contaminating in Cosmetics (식물 추출물의 화장품 오염 미생물에 대한 생육억제 활성)

  • Ryu, Young Hyun;Kim, Dong Geun;Yeon, Il Kwon;Huh, Chang Seok;Ryu, Jung A;Jo, Woo Sik;Park, Sang Jo;Lee, Youn Su
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • A total of 708 methanol extracts from 599 species in 126 families(e.g. Aceraceae) of plant resources were screened for inhibition of cosmetics contaminating microbe, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans using 96-well microplate bioassay. Four plant extracts including Celastrus orbiculatus inhibited the growth of Staphylococcus aureus over 90%, 38 extracts including Acer palmatum var. nakaii inhibited the growth of Pseudomonas aeruginosa over 60% and 10 extracts including Ilex crenata var. microphylla inhibited growth of Candida albicans over 60%. Plant extracts showing growth inhibition activity against S. aureus, P. aeruginosa and C. albicans could be used as a reference guide for the future development of natural preservatives for cosmetics.

Biological Control of Perilla Culture by Burkhoderia sp. AK-17 (Burkhoderia sp. AK-17에 의한 잎들깨 재배의 생물학적 조절)

  • Kim, Keun-Ki;Kim, Yong-Kyun;Son, Hong-Joo;Choi, Young-Whan;Kang, Kyu-Young
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • There are various crop diseases in green houses that are caused by the cultural environments, especially high temperature and moisture. To solve the forementioned problems, farmers are overusing agricultural chemicals, causing other damages by the chemical residue. In this study, antagonistic bacteria as biological control agents were isolated to produce the environmentally-friendly crops for use in green houses. Eighteen species of antagonistic bacteria were totally isolated from the soil and plants in the Perilla fields, and AK-17 showed the highest activity among the isolates. According to the results of anti-fungal spectrum against several pathogens by AK-17, the antagonism effect of the isolates was remarkable against grey mold rot by Botrytis cinerea, sclerotinia rot by Sclerotnia sclerotiorum, and stem rot by Rhizoctonia solini. To evaluate the biological control effects of the isolates against the major diseases of Perilla, studies were carried out to evaluate the preventive and the curative effects of the diseases throughout the pot experiments. According to the forementioned experiments, the preventive and the curative effects by the isolates against sclerotinia rot were respectively showed as 55% and 92%. For the grey mold rot, those were 40% and 78%, respectively. As to the evaluation of the growth-promoting effect by AK-17, the length and the biomass of the tested plants were increased to 120% and to 164%, respectively. For the leaf numbers and area were respectively increased to 120% and 220%. Furthermore, AK-17 was identified as Burkhoderia sp. according to the results of physiological properties and genetic methods.

Performance Characteristics of Agitated Bed Manure Composting and Ammonia Removal from Composting Using Sawdust Biofiltration System (교반식 축분 퇴비화 및 톱밥 탈취처리 시스템의 퇴비화 암모니아 제거 성능)

  • Hong, J.H.;Park, K.J.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2007
  • Sawdust biofiltration is an emerging bio-technology for control of ammonia emissions including compost odors from composting of biological wastes. Although sawdust is widely used as a medium for bulking agent in composting system and for microbial attachment in biofiltration systems, the performance of agitated bed composting and sawdust biofiltration are not well established. A pilot-scale composting of hog manure amended with sawdust and sawdust biofiltration systems for practical operation were investigated using aerated and agitated rectangular reactor with compost turner and sawdust biofilter operated under controlled conditions, each with a working capacity of approximately $40m^3\;and\;4.5m^3$ respectively. These were used to investigate the effect of compost temperature, seed germination rate and the C/N ratio of the compost on ammonia emissions, compost maturity and sawdust biofiltration performance. Temperature profiles showed that the material in three runs had been reached to temperature of 55 to $65^{\circ}C$ and above. The ammonia concentration in the exhaust gas of the sawdust biofilter media was below the maximum average value as 45 ppm. Seed germination rate levels of final compost was maintained from 70 to 93% and EC values of the finished compost varied between 2.8 and 4.8 ds/m, providing adequate conditions for plant growth.

  • PDF

Competition of Adlay and Dominant Weeds, and Weed Control (율무와 우점잡초의 경합 및 방제효과)

  • Yoon, Seong-Tak;Yi, Eun-Sub;Kim, Ki-Jung;Yoon, Seung-Gil
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 1999
  • This experiment was carried out to establish effective weed control system in the cultivation of Coix lachryma-jobi L. The effect of annual weeds artificially transplanted on the growth of Coix lachryma-jobi L. were that the higher the density of weeds, the lower the yield considerably by reducing number of grains and tillers per plant. Among four weeds of Echinochloa crusgalli galli P. BEAUV., Digitaria sanguinalis $S_{COPOL}$., Chenopodium album L., and Portulaca oleracea L., weed of Portulaca oleracea L. reduced adlay yield most by 182.6kg/10a and it was judged to be the most injurious weed to adlay production. Among four weed control systems, which are one herbicide treatment, one herbicide treatment + one cultivating work with cultivator, two times cultivating work with cultivator and two times hand-weeding, the control system of 'one herbicide treatment + one cultivating work with cultivator' showed the lowest amount of weed growth by 7.34 weeds per $m^2$ in comparison with control plot of 35.00 weeds per $m^2$. Among four weed control systems, the system of 'two times hand-weeding' had much more amount of light penetration in adlay canopy with 791.9 mol than any other systems.

  • PDF