Optimization of Culture Condition for the Hydrocinnamic Acid Production from Bacillus subtilis IJ-31

Bacillus subtilis IJ-31에서 Hydrocinnamic Acid 생산을 위한 최적배양조건

  • Joo, Gil-Jae (Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Kim, Young-Mog (Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Lee, Oh-Seuk (Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Kim, Joung-Woong (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Won-Chan (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Song, Kyung-Sik (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Yoon, Sung-Joon (Department of Plant Resource, Sangju National University) ;
  • Kim, Jin-Ho (Department of Plant Resource, Sangju National University) ;
  • Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University)
  • 주길재 (경북대학교 농업과학기술연구소) ;
  • 김영목 (경북대학교 농업과학기술연구소) ;
  • 이오석 (경북대학교 농업과학기술연구소) ;
  • 김정웅 (경북대학교 농화학과) ;
  • 김원찬 (경북대학교 농화학과) ;
  • 송경식 (경북대학교 농화학과) ;
  • 윤성준 (상주대학교 식물자원학과) ;
  • 김진호 (상주대학교 식물자원학과) ;
  • 이인구 (경북대학교 농화학과)
  • Published : 2005.09.30

Abstract

The metabolites released from cultures of rhizosphere bacteria can inhibit plant growth. Bacillus subtilis IJ-31 inhibited plant growth by the production of hydrocinnamic acid (HCA). The production of HCA by plant-growth inhibiting rhizobacterium B. subtilis IJ-31 was optimized. $90.5\;{\mu}g/ml$ of HCA was obtained under the condition of 1% rice bran as carbon source, 0.5% tryptone as nitrogen source, 0.1% $ZnCl_2$ as metal source at $37^{\circ}C$ for 60 h (pH 7.0). The optimal condition for the HCA production by B. subtilis IJ-31 in the jar fermenter was established using response surface methodology (RSM) of statistical analysis system(SAS) program. The production of HCA by B. subtilis IJ-31 in the jar fermenter culture reached $102.99\;{\mu}g/ml$ when 2.24% soil extracts was added and agitation speed was 290 rpm under the same condition. And the experimental value of HCA production is $102.5\;{\mu}g/ml$ in the same culture condition. The production of HCA by B. subtilis IJ-31 is higher as 12% than that from the flask culture.

본 연구에서는 식물생장억제미생물 B. subtilis IJ-31이 생산하는 HCA의 최적생산조건을 검토하였다. HCA생산 최적조건으로 탄소원은 1%의 미강, 질소원은 0.5% tryptone, 무기염은 0.1% $ZnCl_2$, 배양 온도는 $37^{\circ}C$, 배양시간은 60시간, pH는 7.0에서 $90.5\;{\mu}g/ml$의 HCA를 생산하였으므로 이를 최적생산조건으로 확립하였다. 이를 바탕으로 통계프로그램(SAS) 중 반응표면 분석법(RSM)을 이용한 jar fermentor 배양에서의 HCA 최적생산 조건을 확립하였다. 즉 토양추출물 2.24% 첨가, 교반속도 290 ppm, tryptone 0.83% 첨가, 배양온도 $37^{\circ}C$, 배양시간 60시간, pH 7.0에서 $102.99\;{\mu}g/ml$의 HCA를 생산하는 최적생산 조건으로 예측되었다. 따라서 실제 상기 RSM 최적 조건에서 실험한 결과 HCA는 $102.5\;{\mu}g/ml$를 생산하였다. 이러한 결과는 플라스크에서 HCA는 $90.5\;{\mu}g/ml$로 생산되었으나 jar fermenter 배양에서는 플라스크 배양에 비하여 12%가량 HCA 생산량이 증가된 결과를 보여주는 것이다.

Keywords

References

  1. Schroth, M. N. and Hancock, J. G. (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216, 1367-1381 https://doi.org/10.1126/science.216.4553.1367
  2. Gross, D. and Parthier, B. (1994) Novel natural substances acting in plant growth regulation. J. Plant Growth Regul. 13, 94-114
  3. Kloepper, J. W. (1993) In Plant growth-promoting rhizpbacteria as biological control agents. F. B. J. Metting (ed), Soil Microbial Ecology, P. 255-274 Marcel Dekker, New York, NY
  4. Schippers, A. B., Bakker, A. W. and Bakker, P. A. H. M. (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 25, 339-358 https://doi.org/10.1146/annurev.py.25.090187.002011
  5. Schroth, M. N. and Hilderbrand, D. C. (1964) Influence of plant exudates on root-infecting fungi. Ann. Rev. Phytopathol. 2, 101-132 https://doi.org/10.1146/annurev.py.02.090164.000533
  6. Cook, R. J. and Baker, K. F. (1983) In The Nature and Practice of Biological Control of Plant Pathogens. APS Press, St. Paul, MN
  7. Weller, D. M. (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol. 26, 379-407 https://doi.org/10.1146/annurev.py.26.090188.002115
  8. Glick, B. R. (1995) the enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41, 109-117 https://doi.org/10.1139/m95-015
  9. Alstrom, S. and Burns, R. G. (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fertil. Soils 7, 232-238 https://doi.org/10.1007/BF00709654
  10. Bakker, A. W. and Schippers, B. (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growthstimulation. Soil Biol. Biochem. 19, 451-457 https://doi.org/10.1016/0038-0717(87)90037-X
  11. Lee, H. J., Kim, W. C., Jeon, S. Y., Kim, J. W., Joo, G. J., Rhee, I. K. and Song, K. S. (2003) Growth inhibitors of soybean seedling from Bacillus sp. IJ-31. Agri. Chem. Biotechnol. 46, 100-104
  12. Lee, H. J., Jeon, S. Y., Kim, J. Y., Kim, S. I., Kim, W. C., Joo, G. J., Rhee, I. K. and Song, K. S. (2004) Effect of plant growth inhibition by hydrocinnamic acid from Bacillus sp. IJ- 31 and it's homologues. Biogreen 21, workshop. K-7. Cheonan Sangrok Resort. Cheonan
  13. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  14. SAS. In User's Guide: Statistic, Version 6. (1989) SAS Inst., Inc., Cary, NC
  15. Myers, R. H. and Montgomery D. C. (2002) In Response surface methodology: Process and product optimization using designed experiments (2nd ed.), Wiley, New York
  16. Rice-Evans, C., Miller, N. and Pagana, G. (1996) Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933-956 https://doi.org/10.1016/0891-5849(95)02227-9
  17. Aastroem, B. (1991) Role of bacterial cyanide production in differential reaction of plant cultivars to deleterious rhizosphere Pseudomonads. Plant Soil 133, 93-100 https://doi.org/10.1007/BF00011903