• Title/Summary/Keyword: 자체 보강 효과

Search Result 53, Processing Time 0.028 seconds

Evaluation of Design Parameters of Grouting Nail (그라우팅 네일을 이용한 사면보강공법의 설계인자 추출 연구)

  • 황영철;김낙영;석정우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10b
    • /
    • pp.44-58
    • /
    • 2001
  • FRP(Fiberglass Reinforced Plastic)관을 이용한 사면보강은 천공 후 그라우트재에 압력을 가하여 그라우트재의 천공홀 충전뿐만 아니라 지반으로의 침투주입 효과를 일으켜, 전체적인 보강력 증대를 기대하는 공법이다. 이런 특성을 설계에 반영하기 위해서는 구조재료인 FRP관 자체에 의한 지반보강효과 뿐만 아니라 그라우팅에 따른 지반강도의 증진효과를 정량적으로 평가하는 것이 선행되어야 하나 아직까지는 이에 대한 연구가 부족한 실정이다. 따라서 대상지반을 토사와 암반사면으로 구분하여 각각의 보강효과를 확인하고자 현장시험 및 수치해석을 실시하였으며, 이로부터 지반종류에 따른 보강특성과 합리적인 설계를 위한 설계인자를 추출하고자 하였다.

  • PDF

Fire Resistance Property of RC Structure Member Strengthened with Fiber Sheet (섬유시트로 보강된 철근 콘크리트 구조부재의 방ㆍ내화성능)

  • 이한승
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.45-50
    • /
    • 2002
  • 근년, 철근 콘크리트조 구조부재의 열화 및 건축물의 용도변경에 따라 건축물의 보수 및 보강에 관한 공법의 개발 및 그 효과를 검증하려는 연구가 활발히 진행되고 있다. 이에 따라, 보강공법으로서는 경제성ㆍ시공성 면에서 우수한 탄소섬유시트, 아라미드섬유 시트, 유리섬유시트 보강공법 및 FRP판 보강공법 등 합성수지 접착제를 사용하는 새로운 보강공법들이 폭넓게 연구되어 현장 실용화되어 사용 중에 있다. 그러나, 이들 보강공법에 관한 연구는 주로 구조적인 내력 보강효과 산정에 관한 것이 대부분이고 보강후의 내화성능 및 내구성능에 관한 연구는 매우 부족한 실정이다. 이들 보강공법은 주로 에폭시수지계 접착제에 의하여 콘크리트와 보강재의 접착력에 의하여 내력이 전달되는 메커니즘으로 되어있어 화재가 발생한 경우 내화피복이 없다면 접착제 자체의 연소에 의하여 유독가스의 발생 및 접착강도가 크게 저하되어 그 구조적인 보강성능은 급속히 저하할 것으로 판단된다. 또한, 현재 이들 보강공사는 내화성능의 검토 없이 실제 시공이 이루어지고 있으므로 화재시에는 대형참사를 일으킬 위험성이 있다.(중략)

A Study on the Strengthening Effect of Reinforced Conctete BeamsFlexural Strengthening after Pre-loading (선가력 후 휨 보강한 RC보의 보강 효과에 관한 연구)

  • Kim, Jeong-Sup;Sin, Yong-Seok;Jo, Cheol-Hee;Kim, Kyoug-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.183-190
    • /
    • 2006
  • From the result of this research above, it may be summed up as follows. As a summary of results from each experiment, as the test body reinforced with the carbon rods was embedded inside the concrete section and made it possible uniform movement, this study has shown that it had excellent characteristics in improving the flexural strength and ductility. Also, it was considered as the carbon-steel sheet composite plate was to exert the strength more if it would complement the adherence with the concrete.

Evaluation of Reinforcement Effects According to Reinforcement Type and Grouting Method (지반보강재의 형상과 그라우팅 방법에 따른 보강효과 평가)

  • Park, Jongseo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.13-20
    • /
    • 2019
  • In order to ground reinforcement, the chemical grouting, the anchor, the soil nailing system, the micropile, etc. can be mentioned by the methods widely used in domestic. The above ground reinforcement methods are developed by various methods depending on the type of reinforcement, installation method, presence of prestress, grouting method, etc. However, in common, the strength of reinforcement, the friction force of grout and reinforcement and the friction force of grout and ground are the main design variables. Therefore, the optimized ground reinforcement is a material with a high tensile strength of the reinforcement itself, the friction force between the reinforcement and the grout is high, and the application of an optimal grouting method is necessary to improve the friction force between the grout and the ground. In this study, a total of 20 model tests were conducted to analyze the reinforcement effects according to the shape of the reinforcement and the grouting method. As a result of the test, As a result of the experiment, it is judged that the reinforcing effect is superior to the perforated + wing type reinforcement and post grouting method.

Evaluation of Reinforcing Effects of Pressure-Injected Grouting Nail in Weathered Rock (풍화암 사면에서의 압력분사 그라우팅 네일 보강 효과 연구)

  • Hwang, Young-Cheol;Kim, Nak-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.47-55
    • /
    • 2002
  • The slope reinforcing method utilized in this paper reinforces the ground overall by means of filling borehole as well as permeating grout material into ground by injecting it through the grouting pipe. In order to reflect these characteristics to design, not only the ground reinforcing effect by the structural material itself but also the ground strength improvement effect by the grouting injection must be quantitively evaluated. But precedent research of it has been insufficient. Therefore, the slope reinforcing method was applied to the weathered rockmass slope situated in the highway in order to analyze reinforcing effect and the instrumentation of slope was performed. Through analysis of this field test, the slope reinforcing method was proved to be effective and back analysis method based on instrumentation values of slope was proposed to apply to reinforcing design. In this paper, the effectiveness of reinforcing method was certified through proposed back analysis.

  • PDF

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable (X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

The effects of the face reinforcement at shallow tunnels in fractured rock masses (파쇄대 암반에서 얕은 심도의 터널 굴착시 막장보강효과에 관한 연구)

  • Nam, Kee-Chun;Heo, Young;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.323-336
    • /
    • 2003
  • Recently, the development of tunnel reinforcement method has been required relating to the shallow tunnelling in soft ground. In this study, the improvement method on tunnel stability is proposed by evaluating the efficiency of face reinforcement which enables to control extrusion of advance core, however, it is often neglected in urban tunnelling under the poor ground conditions. Systematic pre-confinement ahead of the face improves the tunnel stability, subsequently, displacement of the crown and surface settlement can be restrained by proper method. 3-dimensional numerical analysis including horizontal reinforcement modelling on a face is applied to estimate the behaviour of a tunnel in relation to the ground and reinforcement conditions. Consequently, extrusion at the face decreases significantly after using the horizontal reinforcement and the effect of reinforcement is much increased in case of applying the supplemental reinforcement ahead of the face together. Especially, confinement effect around the tunnel and the core is proved by means of the core reinforcement in poor ground conditions.

  • PDF

Dynamic Characterisics of the Bridge Retrofitted by Restrainer under Seismic Excitations Considering Pounding Effects (충돌효과를 고려한 Restrainer로 보강된 교량의 지진하중에 대한 거동특성분석)

  • 김상효;마호성;이상우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.75-86
    • /
    • 1999
  • An analysis model is developed to evaluate the dynamic responses of a bridge system under seismic excitations, in which pounding actions between girders are considered in addition to other phenomena such as nonlinear pier motion, rotational and translational motions of foundations. The model also considers the abutment and restrainers connecting adjacent girders to prevent the unseating failures. Using the developed model, the longitudinal dynamic behaviors of a bridge system are examined for various peak ground accelerations, and the effects of the applied restrainers are investigated. It is found that the restrainers reduce the relative displacement with the shorter clearance length as well as the higher stiffness of the restrainers for moderate excitations. However, in the region with strong excitations the restrainers may yield due to the large relative displacement. Therefore, the extension of support length in addition to restrainers may need to prevent the unseating failure more effectively.

  • PDF

Seismic Retrofit of Old Reinforced Concrete Buildings (노후 RC 건물의 내진 보강)

  • Huynh, Chanh Trung;Park, Jong-Yeol;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.150-153
    • /
    • 2010
  • 본 논문에서는 비내진 설계된 철근콘크리트 골조로 이루어진 저층의 노후공동주택의 내진성능을 향상시키기 위한 구조물의 보강방법에 대해 연구하였다. 이를 위하여 비선형 정적 해석과 시간 이력 해석을 수행하여 추가되는 철골 모멘트골조와 가새의 내진보강 효과를 검증하였다. 해석결과에 따르면 $H150{\times}150{\times}6{\times}8$로 구성된 철골 모멘트골조는 탄성구간에서는 하중의 약 1%, 구조물이 항복한 이후, 최대 3.5%까지 하중을 부담하여 자체적으로 지진하중에 대한 저항 성능은 크지 않았다. 그러나 철골 모멘트골조와 가새를 동시에 사용함으로써 접합부의 조기 파괴를 방지하고 구조물의 내진성능을 큰 폭으로 증진시킬 수 있는 것으로 나타났다.

  • PDF

Stability Analysis and Design of Reinforced Masonry Walls (보강석축의 안정해석 및 설계)

  • Kim, Hong Taek;Kang, In Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.239-253
    • /
    • 1992
  • The masonry walls, having the characters of cheap construction materials and relatively easy construction, have been widely used in supporting slopes. However, the necessity of reinforcing methods to improve the stability of masonry walls has been continuously required due to the collapses taken place quite often. In the present study, a new method to improve the stability of masonry walls was developed based on the soil nailing system proven effective in strengthening the surrounding soils. The developed method could be used in reinforcing the old masonry walls structually unsafe as well as in constructing new masonry walls. The effects of pore water pressures due to heavy rainfalls were included in the developed method and also the chart practically applicable to design was presented, together with a design example.

  • PDF