• Title/Summary/Keyword: 자중관입

Search Result 11, Processing Time 0.024 seconds

Economic Feasibility of Bucket Foundation for Offshore Wind Farm (해상풍력발전 버켓기초공법의 경제성 평가)

  • Oh, Myoung-Hak;Kwon, O-Soon;Kim, Keun-Soo;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1908-1914
    • /
    • 2012
  • As the turbine capacity and the water depth of wind farms are increasing, the construction cost of substructures and foundations for offshore wind turbines is expected to increase. Since the installation of suction bucket foundation is achieved by both self-weight and applied suction, the construction generally does not require heavy equipment for penetration. This study provides an economic analysis on the tripod which have the bucket foundations and compares that the jacket foundation at 50m water depth on sand layer or soft layer. As the strength of the soil and the number of the foundation is increasing, the construction cost of the tripod with the bucket foundations is more economically feasible than the jacket foundation.

A Study on the Mechanical Characteristic and Shear Strength haracteristic on Elapsed Time of the Western Sea Dredged Soils (서해안 준설토의 역학적 특성 및 시간경과에 따른 강도 특성에 관한 연구)

  • Kim, Hongtaek;Han, Yeonjin;Yu, Wandong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.31-41
    • /
    • 2013
  • The dredged soils of western sea of Korea have been used as the fill materials because it possess the characteristics that constitute silt, silty sand and sand mainly. However, a study on dredged soils as the fill materials is insufficient. Hence, in this present study, the application the dredged soils of western sea of Korea as the fill materials was confirmed. Primary, the composition characteristics of the ground was analyzed to confirm the application on dredged soils as the fill materials by the piezo-cone penetration test. In laboratory test, it was performed the self-weight consolidation test for mechanical characteristics of the dredged soils. The direct shear test using self-weight consolidation test sample for shear strength characteristics was performed after self-weight consolidation test. Additionally, the mechanical characteristics of the dredged soils on elapsed time using self-weight consolidation test sample, which is drained naturally, was evaluated. The dredged soils of western sea of Korea show that unit weight and shear strength is increased as natural drain time elapses.

Nonlinear Consolidation Analysis Considering Radial Drainage (수평배수를 고려한 비선형 압밀해석)

  • Lee, Song;Chae, Young-Su;Hwang, Koou-Ho;Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.105-115
    • /
    • 2000
  • 본 연구는 현실에 부합하는 연약지반의 압밀거동을 예측하기 위한 연구로서, 일단 3차원 배수 조건하에서 지반의 자중 및 압축성과 투수성의 비선형적 성질이 고려된 비선형 압밀모델을 구성하였다. 또한 연직 배수재의 시공과정에서 발생할수 있는 지반의 교란현상 및 다양한 이질층의 구성, 점증적인 하중재하 조건, 연직배수재의 부분관입 조건에 대한 고려가 가능하도록 비선형 압밀모델을 수정, 보완하였다. 이상의 연구결과를 바탕으로 유한차분방법에 의한 수치해석을 실시하였고 최종적으로 각종 희귀분석과정을 도입한 3차원 비선형 압밀해석 프로그램을 개발하였다. Ska-Edeby의 시험시공 사례를 통한 개발 프로그램의 검증을 실시하였는데, 시험시공 사례의 경우, 현장에서 측정한 깊이별 침하량 및 간극수압 결과를 개발 프로그램에 의한 예측결과와 비교, 분석하였다. 또한 개발 프로그램을 이용하여 다층지반 해석과 관련된 기존 해석방법의 문제점 및 지반의 교란효과와 연직배수재의 부분관입조건, 점증적인 하중재하 조건등이 지반의 압밀거동에 미치는 영향에 대해 살펴보았다.

  • PDF

Jacking Penetration Resistance of Bucket Foundations in Silty Sand Using Centrifuge Modelling (실트질모래 지반에서 버켓기초의 압입저항력에 대한 원심모형실험 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Lee, Kyu-Yeol;Jee, Sung-Hyun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • Penetration resistance of bucket foundations with skirt wall in the silty sand of the western coast of Korea was analyzed by centrifuge modelling. The penetration resistance is induced when the bucket foundations are jacked into the soil without suction, and is directly related to the self-weight penetration depth. The procedure by Houlsby and Byrne (2005), which takes into account the effect of stress increase by frictional resistance of skirt wall, was utilized to generate the penetration resistance similar to the experimental results. This paper describes the methods by which major parameters such as lateral earth pressure coefficient and friction angle between the skirt wall and the soil are evaluated. The effect of changes in these parameters on the predictions is analyzed. Also, observed soil behaviour during jacking penetration is investigated.

Evaluation of Suction Installation for the Circular Pipe into Low-water Sandy Ground via Model Test (모형실험을 활용한 저수심 사질토 지반에서 원형강관 설치 석션압 평가)

  • Xin, Zhen-Hua;Kim, Jae-Hyun;Lee, Ju-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, a circular pipe can be installed by suction pressure for construction on soft ground with a low-water level. A series of laboratory-scale model tests were conducted in sandy ground to comprehend the suction pressure of the circular pipe in low-water levels. For repeated tests on saturated sandy soil, a container was mounted with three vibration generators on the floor. A repetitive vibration was applied using the vibration system for ground compaction. In the model tests, different diameters and thicknesses on saturated sandy soil with a water depth were considered. The result showed that the suction pressure increased with increasing penetration depth of the circular pipe. Moreover, the suction pressure required to penetrate the pipe decreased with increasing diameter. In the low-water level, the total suction pressure measured at the top lid increased because additional suction pressure is required to lift the water column. On the other hand, this led to a decrease in suction pressure to penetrate the circular pipe because the weight of the water column is applied as a dead load. Therefore, it is necessary to consider the water level to design the required suction pressure accurately.

An Experimental Study on Settlement Reduction of Artificial Reef using Geosynthetics (토목섬유를 이용한 인공어초 침하 저감에 대한 실험 연구)

  • Ha, Yong-Soo;Kim, Yun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.21-29
    • /
    • 2015
  • An artificial reef is a human-made underwater structure to improve marine environment and to provide a habitat for fish and other ocean wildlife. An artificial reef is placed on the ocean ground. In soft ground like most of the seabed soil, the ground has been settled due to weight of artificial reef. This study investigated the bearing capacity and settlement reduction effect of geosynthetics which were reinforced on the ground in a large size tank. Penetration tests and large soil tank laboratory tests were performed to investigate settlement reduction effect and bearing capacity on artificial reef with different spreading area of geogrid. Laboratory test results indicate that the spreaded geogrid under artificial reef reduce the settlement of ground and increase bearing capacity of ground.

Evaluation of Soil Disturbance Due to Bucket Installation in Sand (모래지반에서 버켓기초 설치에 의한 지반교란 평가)

  • Kim, Jae-Hyun;Lee, Seung-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.21-31
    • /
    • 2018
  • Bucket foundations are widely used in offshore areas due to their various benefits such as easy and fast installations. A bucket is installed using self-weight and the hydraulic pressure difference across the lid generated by pumping out water from inside the bucket. When buckets are installed in high permeable soil such as sands, upward seepage flow occurs around the bucket tip and interior, leading to a decrease in the effective stress in the soil inside the buckets. This process reduces the penetration resistance of buckets. However, the soil inside and outside the bucket can be disturbed due to the upward seepage flow and this can change the soil properties around the bucket. Moreover, upward seepage flow can create significant soil plug heave, thereby hindering the penetration of the bucket to the target depth. Despite of these problems, soil disturbance and soil plug heave created by suction installation are not well understood. This study aims to investigate the behavior of soil during suction installation. To comprehend the phenomena of soil plug heave during installation, a series of small-scale model tests were conducted with different testing conditions. From a series of tests, the effects of tip thickness of bucket, penetration rate, and self-weight were identified. Finally, soil properties inside the bucket after installation were approximated from the measured soil plug heave.

The Characteristics of Sedimentation-Consolidation and Surface Strength for Dredging and Landfill Areas in Each Coast (해역별 준설토의 침강압밀 및 매립지 표층강도 특성)

  • Lee, Sangwoong;Gu, Bonhyo;Choi, Chaseok;Lee, Junho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.15-22
    • /
    • 2015
  • This study gives the characteristics of sedimentation-consolidation and surface strength for dredging and landfill areas in each coast. For the analysis of the sedimentation-consolidation characteristics, the column tests were performed and the results were compared with existing various literatures and design reports for dredged soil disposal. The surface strength of landfill soils of west and south coast were investigated by using the portable cone tester. As a results of analysis, the coefficient of sedimentation-consolidation on south coastal dredging soils is more sensitive with variation of initial water contents than on the west coastal dredging soils. And the surface strength of the dredging landfills is a higher in the west coast than in the south coast. Finally, the results of this study will be utilized as a basis data for analysis and design in the field of dredging and landfill.

Engineering Performance of Extruded Fly Ash Cement Panel with Bottom Ash (잔골재로서의 바텀애시를 사용한 플라이애시 시멘트 압출경화체의 공학적 특성)

  • Lee, Myeong-Jin;Kim, Jin-Man;Han, Dong-Yeop;Choi, Duck-Jin;Lee, Keun-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • The aim of this research is providing the fundamental data for treating and recycling the byproducts by using the wet processed bottom ash as a fine aggregate replacement for cement-based extruded panel. Although the cement-based extruded panel was used mainly as a cladding component with its high strength and outstanding durability, it was hardly spread because of low economic feasibility due to the high cost of additives or fibers which were used to achieve 14 MPa of flexural strength as a cladding material. As a solution of this drawback, by the previous research, it was possible to replace cement by fly ash up to 80 % by decreasing quality criteria with restricting the application to indoor purpose. In this research, based on the previous research, by using the bottom ash as a replacement of fly ash, improvement of shape retention performance is tried. As a result of the experiment on evaluating the optimum content and PSD of bottom ash, as the fineness modulus and content of bottom ash was increased, the extruding performance was decreased and penetration resistance was increased. Additionally, the optimum content and the maximum particle size was found as 20 %, and 0.3 mm, respectively.

A Preliminary Study on Reduction of Shrinkage Stress in Concrete Slabs (콘크리트 슬래브 건조수축 응력 감소에 관한 초기연구)

  • Park, Jeong-Woo;Jeong, Young-Do;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2009
  • Volume of concrete slab changes by variations of temperature and moisture after its placement. Shrinkage due to evaporation causes tensile stress in the slab when contraction of the slab is restrained by its self weight, friction with subbase, and etc. Actual tensile stress caused by the shrinkage was less than theoretically predicted stress according to previous studies. It was the stress reduction due to visco-elastic property of the early-age concrete slab partially restrained. In this study, strains of restrained circumferential, unrestrained circumferential, and unrestrained square pillar concrete specimens were measured to investigate stress reduction of the specimens with age of concrete. Elastic modulus of the concrete was measured at the age of 1, 3, 7, 14, 28 days and penetration test was performed. The stress reduction was calculated by input the test results into theoretical equations suggested by previous researchers. The stress reduction of the restrained concrete specimens will be applied to design of concrete pavements based on results of the study.

  • PDF