• Title/Summary/Keyword: 자율 항법

Search Result 114, Processing Time 0.027 seconds

Steering Performance Test of Autonomous Guided Vehicle(AGV) Based on Global Navigation Satellite System(GNSS) (위성항법 기반 AGV(Autonomous Guided Vehicle)의 조향 성능 시험)

  • Kang, Woo-Yong;Lee, Eun-Sung;Kim, Jeong-Won;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2010
  • In this paper, a GNSS-based AGV system was designed, and steering tested on a golf cart using electric wires in order to confirm the control efficiency of the low speed vehicle which used only position information of GNSS. After analyzed the existing AGVs system, we developed controller and steering algorithm using GNSS based position information. To analyze the performance of the developed controller and steering algorithm, straight-type and circle-type trajectory test are executed. The results show that steering performance of GNSS-based AGV system is ${\pm}\;0.2m$ for a reference trajectory.

Underwater Navigation of an Autonomous Underwater Vehicle Using Range Measurements from a Fixed Reference Station (고정기준점에 대한 거리측정 신호를 이용하는 자율무인잠수정의 수중항법)

  • Lee, Pan-Mook;Jun, Bong-Huan;Lim, Yong-Kon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.106-113
    • /
    • 2008
  • This paper presents an underwater navigation system based on range measurements from a known reference station fixed on the sea bottom or floated at surface with a buoy, for which the system is extended to 3-dimensional coordinates. We formulated a state equation in polar coordinates and constituted an extended Kalman filter for discrete-time implementation of the navigation algorithm. The autonomous underwater vehicle, lSiMl, cruising with a constant speed can estimate its trajectory using just range measurements and additional depth, heading and pitch sensors. Simulation studies were performed to evaluate the underwater navigation of the maneuvering AUV with range measurements. We modulated the sample rate of range measurements to evaluate the effect of the update rate, and changed the initial position error of the AUV to check the robustness to estimation errors. Simulation results illustrates that the extended navigation system provides convergence of the state estimates. The navigation system was conditionally stable when it had initial position errors.

Zero Accident, Connected Autonomous Driving Vehicle (사고제로, 커넥티드 자율이동체)

  • Choi, J.D.;Min, K.W.;Kim, J.H.;Seo, B.S.;Kim, D.H.;Yoo, D.S.;Cho, J.I.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.22-31
    • /
    • 2021
  • In this thesis, we examine the development status of autonomous mobility services using various artificial intelligence algorithms and propose a solution by combining edge and cloud computing to overcome technical difficulties. A fully autonomous vehicle with enhanced safety and ethics can be implemented using the proposed solution. In addition, for the future of 2035, we present a new concept that enables two- and three-dimensional movement via cooperation between ecofriendly, low-noise, and modular fully autonomous vehicles. The zero-error autonomous driving system will safely and conveniently transport people, goods, and services without time and space constraints and contribute to the autonomous mobility services that are free from movement in connection with various mobility.

Autonomous Navigation of a Mobile Robot in Unknown Environment Based on Fuzzy Inference (미지 환경에서 이동로봇의 퍼지추론 기반 자율항법)

  • Zhao, Ran;Lee, Dong-Hwan;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.292-297
    • /
    • 2016
  • This paper presents a navigation problem for an autonomous mobile robot in an unknown environment. The environment contains various types of obstacles and is completely unknown to the robot. Therefore, all of the surrounding information must be detected by the robot's proximity sensors. A navigation method was developed based on a fuzzy inference system to guide the robot to move along a collision-free path and reach the goal position quickly. The obstacles are assumed to be static, and both regular and irregular types of obstacles were investigated. A wall following method is also proposed for a special environment that contains a labyrinth or sharp U-valley obstacles. Simulation results demonstrate that the proposed method has great potential for this navigation problem.

Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle (반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험)

  • Lee, Chong-Moo;Lee, Pan-Mook;Kim, Sea-Moon;Hong, Seok-Won;Seo, Jae-Won;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.141-148
    • /
    • 2003
  • This paper presents a rotating ann test for assessment of an underwater hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. The rotating ann tests are conducted in the Ocean Engineering Basin of KRISO, KORDI to generate circular motion in laboratory, where the USBL system was absent in the basin. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

  • PDF

Programming Toolkit for Localization and Simulation of a Mobile Robot (이동 로봇 위치 추정 및 시뮬레이션 프로그래밍 툴킷)

  • Jeong, Seok Ki;Kim, Tae Gyun;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.332-340
    • /
    • 2013
  • This paper reports a programming toolkit for implementing localization and navigation of a mobile robot both in real world and simulation. Many of the previous function libraries are difficult to use because of their complexity or lack of usability. The proposed toolkit consist of functions for dead reckoning, motion model, measurement model, and operations on directions or heading angles. The dead reckoning and motion model deals with differential drive robot and bicycle type robot driven by front wheel or rear wheel. The functions can be used for navigation in both real environment and simulation. To prove the feasibility of the toolkit, simulation results are shown along with the results in real environment. It is expected the proposed toolkit is used for test of algorithms for mobile robot navigation such as localization, map building, and obstacle avoidance.

Implementation of In-Car GNSS Jamming Signal Data Generator to Test Autonomous Driving Vehicles under RFI Attack on Navigation System (항법 시스템 오작동 시 자율주행 알고리즘 성능 테스트를 위한 차량 내 재밍 신호 데이터 발생기 구현)

  • Kang, Min Su;Jin, Gwon Gyu;Won, Jong Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.79-94
    • /
    • 2021
  • A GNSS receiver installed in autonomous vehicles is the most essential device for its navigation. However, if an intentional jamming signal is generated, there is a risk of exposure to an accident risk due to deterioration of the GNSS sensor's performance. Research is required to prevent this, and accordingly, a jamming generating device must be provided. However, according to the provisions of the law related to jamming, this is illegal. In this paper, we implement an in-vehicle jamming device that complies with the provisions of the law and does not affect the surrounding GNSS sensors. Driving simulation is used to evaluate the performance of the GNSS algorithm, and the malfunction of autonomous vehicles occurring in the interference environment and data errors output from the GNSS sensor are analyzed.

Big Data Analytics for Countermeasure System Against GPS Jamming (빅데이터 분석을 활용한 GPS 전파교란 대응방안)

  • Choi, Young-Dong;Han, Kyeong-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • Artificial intelligence is closely linked to our real lives, leading innovation in various fields. Especially, as a means of transportation possessing artificial intelligence, autonomous unmanned vehicles are actively researched and are expected to be put into practical use soon. Autonomous cars and autonomous unmanned aerial vehicles are required to equip accurate navigation system so that they can find out their present position and move to their destination. At present, the navigation of transportation that we operate is mostly dependent on GPS. However, GPS is vulnerable to external intereference. In fact, since 2010, North Korea has jammed GPS several times, causing serious disruptions to mobile communications and aircraft operations. Therefore, in order to ensure safety in the operation of the autonomous unmanned vehicles and to prevent serious accidents caused by the intereference, rapid situation judgment and countermeasure are required. In this paper, based on big data and machine learning technology, we propose a countermeasure system for GPS interference that supports decision making by applying John Boyd's OODA loop cycle (detection - direction setting - determination - action).

자율운항선박의 정박지 내 항행 지원을 위한 운항 패턴 및 규정에 관한 기초 연구

  • 이혜윰;강민주;김혜진;김동함;박정홍
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.297-298
    • /
    • 2022
  • 본 연구는 울산항 인근 정박지 내 선박의 운항 패턴을 파악하고, 관련 법규 및 준수 실태를 대조하여 자율운항선박의 실제 운항 시에 부차적인 운항 수칙을 수립하는 데 목적을 두고 있다. 일반적으로 항행하는 선박의 해양사고 중 높은 비중을 차지하는 조우 상황에서의 운항 규칙과 관련된 법률이 정박지 내에도 적용되고 있다. 이러한 관점에서 관련 법규들을 토대로, 실제 정박지에서 항행하는 선박들의 운항 패턴들을 관측하였으며, 대부분 정박지 내에서 출항하는 선박들은 항로의 우측에 근접하여 운항하는 양상을 보이며 우측 항행을 준수하고 있음을 확인하였다. 또한, 정박지 및 항내에서 충돌과 같은 예치기 못한 사고가 발생하는 대표적인 운항 패턴들은 정면 조우 상황, 방파제 내 출항 선박 회피, 우측 항행 등으로 분류되며, 정면 조우 상황과 방파제 출항 선박 회피의 경우에는 관련 법규를 준수하며 항행하는 것을 확인하였으나, 우측 항행 상황에서는 조우 상황에 따라 부득이하게 이행할 수 없는 경우가 발생함을 확인하였다. 본 기초 연구를 통하여 정박지 및 항내에서의 항행하는 선박의 운항 패턴을 자율운항선박에 적용 가능성을 타진하고, 항해 지원이 가능한 운항 수칙을 새로 정립하는 데 활용하고자 한다.

  • PDF

A Study on Deployment of Inland Reference Stations for Optimizing Marine and Inland User Performance Using Precise PNT (해양 및 내륙 정밀 PNT 사용자 성능 최적화를 위한 내륙 기준국 배치 연구)

  • Yebin Lee;Byungwoon Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.396-409
    • /
    • 2023
  • In the field of autonomous vehicles, where high accuracy and reliability are critical, various satellite navigation augmentation systems have been developed to improve system performance. These systems generate correction and integrity information based on measurements and navigation data collected from ground reference stations, enhancing user positioning accuracy. Thus, the performance of the system heavily relies on the deployment and spacing of reference stations. To construct an effective satellite navigation augmentation system, careful consideration must be given to the installation points of reference stations. This paper presents a user positioning performance modeling formula and proposes a method for selecting the installation points of new reference stations. The proposed method involves selecting a candidate group area that can optimize the user's positioning performance. By utilizing this method, the system's performance can be improved, ensuring high accuracy and reliability for autonomous vehicle applications.