최근 기계학습 기술의 급속한 발전에 힘입어 자율주행을 위한 객체 인식 및 처리 기술 역시 비약적으로 발전하고 있다. 그러나 이러한 기계학습의 성능은 모델의 구조와 학습용 데이터의 품질에 영향을 받는다. 특히 주행환경을 잘 표현하는 학습데이터가 중요한데 전혀 새로운 도로, 주행환경, 장애물, 정적 혹은 동적 객체 등을 마주하면 정확도와 안정성에서 부정적인 영향을 받을 수 있는 것이다. 해외의 주행 데이터들에 크게 의존하고 있는 우리나라의 현실에 비춰 볼 때 국내 환경에 맞는 학습데이터를 쉽고 효율적으로 확보/관리/분석할 수 있게 하는 환경의 구축이 시급하다. 따라서 본 논문에서는 자율주행을 위한 기계학습 데이터를 효과적으로 관리하고 분석하기 위한 소프트웨어를 설계하고 개발하였다. 구체적으로는 수집된 영상들을 관리하는 기능, 영상에 존재하는 노이즈 제거 및 화질 개선 처리 기능, 학습 및 검증을 위한 메타 정보 태깅 기능, 태깅 정보의 통계적 분석 기능들을 포함한다. 개발한 소프트웨어는 우리나라에서 자체 촬영한 자율주행 학습 영상들에 대해 딥러닝 모델들을 학습하고 검증하는데 활용할 예정이다.
본 논문은 자율주행 학습이 가능한 택배 로봇을 제안한다. 제안하는 로봇은 지상 주차시설이 없는 공원형 아파트에서 활용 가능하도록 설계되었으며 지상 및 지하 경로가 복잡한 기존 아파트에 비해 공원형 아파트는 이동 경로가 정형화되어 있어 로봇의 안정적인 주행이 가능하여 학생들의 초기 교육 환경으로 적합하다. 택배 로봇은 경로학습을 위한 머신러닝 기술과 카메라와 라이다 센서를 이용한 자율주행을 통하여 택배 운반이 가능하도록 구성하였다. 또한, 수준별 학습이 가능하도록 제어 MCU를 3개로 분리하여 설계하였으며 자율주행, 장애물 인식 등의 동작 테스트를 통하여 학습용 택배 로봇으로 활용될 수 있음을 확인하였다. 향후 정밀한 실내 위치정보 인식 기술과 아파트의 공공기술 플랫폼과 연동하여 다양한 배송 서비스를 위한 교육용 배송 로봇으로 발전시키고자 한다.
미래의 로봇 산업은 기존 자동화 산업 뿐만 아니라 안내, 보안 등의 가정, 공공기관 또는 우주, 심해 등에서 인간을 대신할 대안으로 활용되어질 전망이다. 이는 기존의 단순반복에서 벗어나 자율이동, 자기학습 등이 가능하도록 개발되어야 한다. 본 논문에서는 로봇을 공공기관에서의 안내, 보안 또는 위험현장, 군사용으로 적용하기 위해 필요한 기술인 자율이동시스템을 개발하였다. 로봇이 자율이동하기 위해서는 자기위치추적, 장애물 탐지 및 회피 기술이 필요하다. 이를 위해 초음파센서를 이용해 로봇을 탐지 시스템을 구성하였으며 LM신경회로망 제어기를 사용하여 로봇의 이동을 제어하였다. 또한 시뮬레이션을 통해 장애물 회피능력과 이동성능 결과를 검증하였다.
자율주행 차량의 성능을 검증하기 위해서는 다양한 검증용 시나리오가 필요하기 때문에 최근에는 검증용 시나리오를 자동으로 생성하기 위한 연구들이 수행되고 있다. 실세계에서 발생되는 다양한 현상을 반영한 시나리오를 생성하기 위해서는 자율주행 차량의 주변 상황에 대한 측정이 필요하지만, 공간적인 문제로 한계가 발생한다. 이와 같은 데이터 수집의 어려움을 자율주행 차량에 탑재된 블랙박스의 영상을 통해서 생성하는 것이 가능하다. 본 논문에서는 DRQN을 이용하여 자율주행 차량 사고영역을 자동으로 탐지하는 방법을 제안한다. 동영상에서 추출된 프레임을 분석해서 교통사고 원도우의 초기 위치를 설정한다. DRQN 학습 프레임워크로 차량의 특징을 도출한다. 마지막으로 특징을 기반으로 교통사고 원도우의 크기와 위치를 조정해서 교통사고 영역을 정확하게 찾는다.
자율배송 운행 데이터는 코로나 시대의 라스트마일 배송에 대한 패러다임 변화를 주도하는 핵심이다. 국내 자율배송로봇과 해외 기술선도국가 간의 기술격차 해소를 위해서는 인공지능 학습에 사용 가능한 대규모 데이터 수집과 검증이 최우선으로 요구된다. 따라서 해외 기술선도국가에서는 인공지능 학습데이터를 누구든 사용가능한 공공데이터 형태로 오픈하여 검증과 기술발전에 기여하고 있다. 본 논문은 자율배송로봇 학습을 목적으로 326개의 객체를 수집하고 Mask r-cnn, Yolo v3 등의 인공지능 모델을 학습하고 검증하였다. 추가적으로 두 모델을 기반으로 비교하고 향후 자율배송로봇 연구에 요구되는 요소를 고찰하였다.
음악교육은 창의력, 사회성, 학업 성취도를 향상시킨다. 음악교육에 있어서 학습자들이 수동적으로 지식을 전달 받기보다는 자기 수준에 맞는 내용을 선택하여 자신의 학습속도에 맞춰 스스로 학습할 수 있는 학습자 중심의 교육이 강조되고 있다. 이에 따라 자신의 학습 수준, 속도에 맞게 학습할 수 있는 학습도구의 개발이 요구되고 있고, 특히 자율학습이 가능한 전자 악기 HW, SW에 대한 요구가 높아지고 있다. 그러나 기존의 전자악기와 PC MIDI를 이용한 software들은 초등학교 저학년 학생들이 악기연주 자율학습에 활용하는데 어려움이 있다. 본 논문에서는 이들 문제점들을 해결하기 위해 PC 환경에서 PC와 USB Interface로 통신 가능한 외장 전자 건반악기와 PC 기반 software로 구성되는 악기연주 자율학습 지원도구 구현방법을 제안한다. 외장 전자건반모듈은 USB를 지원하는 PIC18F4550 MCU를 활용함으로써 간결한 구조와 저비용으로 구현하였다. 그리고 PC상에서 수행되는 software는 악보편집, MIDI정보 처리, 외장 전자건반모듈과의 상호연동을 통하여 건반악기와 유사한 환경을 지원함으로써 향후 자율학습용 컨텐츠가 추가될 경우 전자건반악기 연주 자율학습에 활용이 가능하다고 판단된다.
자율주행 반송차가 주어진 경로를 따라 주행 할 때 주행면의 불균일성과 같은 외란요인과 자율반송차 시스템 자체의 비선형성 등으로 인하여 원치 않는 경로추종오차가 발생하게 되는데 본 연구에서는 이러한 경로추종오차를 최소화하기 위해서 신경회로망을 이용한 경로추종 오차 보상방법을 제안한다. 본 방법에서는 신경회로망을 통하여 조향각 보상량을 제공하므로써 경로추종오차를 보상한다. 신경망은 다층 퍼셉트론을 채용하였으며 역전파 알고리즘의 최급강하규칙(Gradient descent rule)을 이용하여 학습을 수행하였다. 본 제안에서는 학습오차를 경로추종오차로부터 정의하므로써 경로추종오차가 최소화되록 신경회로망을 학습시켰다. 제안된 방법의 타당성은 다양한 경로에 대한 모의실험 및 실제 실험을 통하여 검증하였다.
본 연구의 목적은 중학교 1학년 과학 기본과정 지구과학영역의 자율학습용 콘텐츠에 대하여 분석 및 평가를 하는 것이다. 이를 위해 한국교육학술정보원(2008)의 '초 중등교육 e-러닝 품질관리 가이드라인(Ver.2.0)'에서 제시한 '사이버가정학습 콘텐츠 품질관리도구'를 적용하였다. 콘텐츠 분석에 대한 결과는 다음과 같다. 첫째, 학습안내는 학생들이 한 차시에 학습하게 될 내용들을 간략히 소개하고 있는 것으로 나타났다. 그리고 선수학습에서는 진단평가가 이루어지지 않은 것으로 분석되었다. 둘째, 본 학습에서는 학습자의 수준에 맞게 콘텐츠를 선택하여 학습할 수 있었고, 본 학습 시간은 15분 내외로 구성되어 있는 것으로 나타났다. 셋째, 학습평가에서는 학습자가 오답에 대한 피드백은 이루어지지 않고, 틀린 문항 수만 제시되어 있었다. 그리고 학습정리는 그 차시에 배운 중요한 내용에 대해서는 다시 요약 정리하여 제시하고 있다. 콘텐츠 평가에 대한 결과는 다음과 같다. 첫째, 요구분석, 교수학습전략, 상호작용에 대해서는 각 차시마다 큰 차이를 보이지 않았다. 그리고 윤리성에 대한 평가는 적합하지 못한 단어나 문장을 포함하고 있지 않은 것으로 나타났다. 저작권의 평가는 콘텐츠 내의 저작물에 대한 국제저작권표시방법을 준수하여 표시한 것으로 분석되었다. 둘째, 교수설계의 평가는 단순 그림 위주의 설명을 제시하였고, 플래시 등의 시각자료가 미흡한 것으로 나타났다. 그리고 지원체계의 평가에서는 학습자가 콘텐츠를 자유롭게 이용할 수 있도록 설치되어 있는 것으로 나타났다. 그러나 콘텐츠 학습 중 학습자가 메모할 수 있는 메모기능은 없는 것으로 분석되었다. 또한 평가에 대한 평가는 서술 내용에 대한 명확한 평가기준을 제시하고 있지는 않았다. 따라서 각각의 차시마다 조금씩 차이를 보였다. 셋째, 학습내용의 평가분석은 수정 보완하지 않은 탓에 최신의 정보를 포함하고 있지 않아 각 차시마다 큰 차이가 있는 것으로 나타났다.
드론의 시장규모가 커짐에 따라 초창기 군사 목적에서 현재 민간부문으로 확대되고 있다. 현재 드론은 실외에서 사용될 목적으로 제작된 것이 많으나 실내에서도 드론의 활용 여부가 증가할 것으로 예상된다. 본 연구에서는 실외에서만 사용 가능한 GPS를 대신하여 영상 촬영으로 획득한 이미지를 CNN으로 학습을 시켜 자율고도제어비행을 하도록 한다. 첫 번째로 수동 조작하는 드론에 IMU센서를 부착하여 획득한 고도 데이터를 표로 제시함으로써 GPS를 사용하지 않는 드론의 실내주행에서 일정한 고도 유지는 다소 무리가 있음을 보여준다. 두 번째로 드론의 수동 조작은 일정하지 않은 고도 때문에 CNN의 학습할 영상 획득이 어렵다. 일정한 고도의 영상 획득을 위한 실험용 높이 조절 Base를 제작하여 고도별 영상을 획득한다. 획득한 영상을 통해 얻은 이미지를 CNN 학습을 시킨 후, 학습에 사용되지 않은 이미지를 사용하여 고도 판별을 확인한다. 대조군으로 실내장소를 바꾸어 미리 학습된 CNN으로 고도 판별을 확인한다. 학습에 사용된 이미지의 환경(생명공학관)과 대조군(제 2 공학관)이 촬영된 장소의 환경요소의 차이로 오차가 발생한다. 오차는 실내 장소의 총 높이의 차이 및 서로 상이한 천장 구조물에 따른 것으로 사료되며 Data crop을 통해 획득한 이미지의 천정 부분을 제거하여 노이즈를 줄여 고도 판별의 정확도를 높일 수 있을 것으로 예상한다. 세 번째, CNN으로 학습을 통해 Model을 도출하여 자율 고도 제어 프로세스를 제시한다. 그리고 해당 프로세스를 이용한 자율고도제어 주행과 수동조작을 통한 주행에서의 Z축 가속도 데이터의 표준편차를 비교하여 본 연구의 실효성을 보여준다
자율 주행은 이동 로봇의 핵심적 기술로써, 측정된 센서 정보를 토대로 불확실한 위치 정보를 이용한 지도 작성 및 수정 기능과, 불확실한 지도 및 센서 정보를 이용한 로봇의 위치 인식 기능으로 구성된다. 자율주행은 이러한 주행 위치의 불확실성에 기반한 확률론적 방법론과 함께 주행 시 장애물의 감지 및 회피 경로의 생성, 반복적 주행 패턴에 따른 경로 관리 기능이 필수적 요소이다. 거리 기반의 스캐너를 통해 관측된 센서 입력은, 지도 구성에 사용된 벽과 같은 정적 물체와 주행 시의 사람처럼 움직이는 동적 물체와의 구별이 필요하기 ?문에 장애물 감지에 어려움이 있다. 본 논문에서는, 이러한 자율 주행 환경에서 기존의 정적, 동적 개체의 판별 방식과 비교하여, 장애물 회피를 위한 저해상도 격자 공간의 생성 및 강화학습을 이용한 경로 생성을 다루고자 한다. 최종적으로 실험을 통해 제안된 방법론의 실효성을 검증하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.