• Title/Summary/Keyword: 자율주행로봇

Search Result 465, Processing Time 0.026 seconds

Navigation Strategy Of Mobile Robots based on Fuzzy Neural Network with Hierarchical Structure (계층적 구조를 가진 Fuzzy Neural Network를 이용한 이동로봇의 주행법)

  • 최정원;한교경;박만식;이석규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.367-372
    • /
    • 2001
  • This paper proposes a hierachically structured navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. Some simulation results show the effectiveness of the proposed algorithm.

  • PDF

Fuzzy Steering Controller for Outdoor Autonomous Mobile Robot using MR sensor (MR센서를 이용한 실외형 자율이동 로봇의 퍼지 조향제어기에 관한 연구)

  • Kim, Jeong-Heui;Son, Seok-Jun;Lim, Young-Chelo;Kim, Tae-Gon;Kim, Eui-Sun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2002
  • This paper describes a fuzzy steering controller for an outdoor autonomous mobile robot using MR(magneto-resistive) sensor. Using the magnetic field difference values(dBy, dBz) obtained from the MR sensor, we designed fuzzy logic controller for driving the robot on the road center and proposed a method to eliminate the Earth magnetic field. To develop an autonomous mobile robot simulation program, we have done modeling MR sensor, mobile robot and coordinate transformation. A computer simulation of the robot including mobile robot dynamics and steering was used to verify the driving performance of the mobile robot controller using the fuzzy logic. So, we confirmed the robustness of the proposed fuzzy controller by computer simulation.

Analysis of Remote Driving Simulation Performance for Low-speed Mobile Robot under V2N Network Delay Environment (V2N 네트워크 지연 환경에서 저속 이동 로봇 원격주행 모의실험을 통한 성능 분석)

  • Song, Yooseung;Min, Kyoung-wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.18-29
    • /
    • 2022
  • Recently, cooperative intelligent transport systems (C-ITS) testbeds have been deployed in great numbers, and advanced autonomous driving research using V2X communication technology has been conducted actively worldwide. In particular, the broadcasting services in their beginning days, giving warning messages, basic safety messages, traffic information, etc., gradually developed into advanced network services, such as platooning, remote driving, and sensor sharing, that need to perform real-time. In addition, technologies improving these advanced network services' throughput and latency are being developed on many fronts to support these services. Notably, this research analyzed the network latency requirements of the advanced network services to develop a remote driving service for the droid type low-speed robot based on the 3GPP C-V2X communication technology. Subsequently, this remote driving service's performance was evaluated using system modeling (that included the operator behavior) and simulation. This evaluation showed that a respective core and access network latency of less than 30 ms was required to meet more than 90 % of the remote driving service's performance requirements under the given test conditions.

Intelligent Motion and Autonomous Maneuvering of Mobile Robots using Hybrid System (하이브리드 시스템을 이용한 이동로봇의 지능적 동작과 자율주행)

  • 이용미;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.152-152
    • /
    • 2000
  • In this paper, we propose a new approach to intelligent motion and autonomous maneuvering of mobile robots using hybrid system. In high Level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot as a low vevel are specified in the abstracted motions, The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments.

  • PDF

A Study on Image recognition self-tracking airport information bot (영상인식 셀프 트래킹 공항 안내 봇)

  • Kim, Ye-Jin;Kim, Gun-Hee;Maeng, Ju-Won;Yoo, Jae-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.833-835
    • /
    • 2022
  • 코로나 19(Covid-19)사태의 장기화로 비접촉 시스템이 선호됨에 따라 서비스 로봇 시장이 발전하고 있다. 그 중 공항은 특히 접촉에 대한 우려가 큰 장소로 공항 이용객의 안전과 편의를 위한 로봇 시장의 발전이 필요하다. 따라서 영상인식 기반 Haar Cascade 알고리즘을 이용한 트래킹 및 자율주행 기술의 로봇을 개발하였다.

Mobile robot control by MNN using optimal EN (최적 EN를 사용한 MNN에 의한 Mobile Robot제어)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Seo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.186-191
    • /
    • 2003
  • Skills in tracing of the MR divide into following, approaching, avoiding and warning and so on. It is difficult to have all these skills learned as neural network. To make this up for, skills consisted of each module, and Mobile Robot was controlled by the output of module adequate for the situation. A mobile Robot was equipped multi-ultrasonic sensor and a USB Camera, which can be in place of human sense, and the measured environment information data is learned through Modular Neural Network. MNN consisted of optimal combination of activation function in the Expert Network and its structure seemed to improve learning time and errors. The Gating Network(GN) used to control output values of the MNN by switching for angle and speed of the robot. In the paper, EN of Modular Neural network was designed optimal combination. Traveling with a real MR was performed repeatedly to verity the usefulness of the MNN which was proposed in this paper. The robot was properly controlled and driven by the result value and the experimental is rewarded with good fruits.

Advanced Protocols and Methods of Robot Collision Avoidance for Social Network Service (로봇의 소셜 네트워크 서비스를 위한 프로토콜 및 충돌회피 방법)

  • Shin, Seok-Hoon;Hwang, Tae-Hyun;Shin, Seung-A;No, In-Ho;Shim, Joo-Bo;Oh, Mi-Sun;Ko, Joo-Young;Shim, Jae-Chang
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.931-940
    • /
    • 2012
  • Social networking services which spreading rapidly is a system using interrelationship of people by internet or mobile. SNS is a network system of the human-centered. In this paper, in order to make robot become a member of social networks we studied the necessary elements and formation. For robot with communication function and sensing, autonomous, collision avoidance method and communication protocol is needed to let Robot share the present conditions dangerous or special situation. We realized this after investigating necessary sensor for SNS, studying robot's collision-avoidance method, and defining protocol of robot for SNS. Also, we suggested and implemented the wired and wireless integrated communications method.

Implementation of Autonomous Navigation based on the Open Architecture (개방형 아키텍처 기반의 자율주행 기술 구현)

  • Park, Yong-Woon;Jee, Tae-Young;Kang, Sin-Cheon;Ryu, Chul-Hyung;Ko, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.34-38
    • /
    • 2007
  • There has been skeptical aspects for the robot to be effective in combat fields even though consensus of operational needs and some technological advancements. One of fundamental problems is difficulties in the autonomous technology applicable. This technology is not sufficient to be applied for heavy combat operation, therefore, developer first make open architecture, then, application is implemented on the condition that new functions or technologies will be developed later. It is also required to partition all the functions with common segments which are general to all platforms in order to operate together in the fields and to reduce the load of development to each platform respectively. In addition, common middleware based on the reference architecture is also developed to accommodate new technology evolution. This paper introduces the architecture and middleware applied in XAV(eXperimental Autonomous Vehicle) developed in ADD. In addition, the performance of autonomous navigation and system design characteristics are introduced briefly.

A Local Path Planning Algorithm of Free Ranging Mobile Robot Using a Laser Range Finder (레이저거리계를 이용한 자율 주행로봇의 국부 경로계획 알고리즘)

  • 차영엽;권대갑
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.887-895
    • /
    • 1995
  • Considering that the laser range finder has the excellent resolution with respect to angular and distance measurements, a sophisticated local path planning algorithm is achieved by subgoal and sub-subgoal searching methods. The subgoal searching finds the passable ways between obstacles and selects the optimal pathway in order to reduce the moving distanced from start point to given to given goal. On the other hand, the sub-subgoal searching corrects the path given in subgoal searching in the case of which the mobile robot will collide with obstacles. Also, the effectiveness of the established local path planning and local minimum avoiding algorithm are estimated by computer simulation and experimentation in complex environment.

Development of a Traversability Map for Safe Navigation of Autonomous Mobile Robots (자율이동로봇의 안전주행을 위한 주행성 맵 작성)

  • Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • This paper presents a method for developing a TM (Traversability Map) from a DTM (Digital Terrain Model) collected by remote sensors of autonomous mobile robots. Such a map can be used to plan traversable paths and estimate navigation speed quantitatively in real time for robots capable of performing autonomous tasks over rough terrain environments. The proposed method consists of three parts: a DTM partition module which divides the DTM into equally spaced patches, a terrain information module which extracts the slope and roughness of the partitioned patches using the curve fitting and the fractal-based triangular prism method, and a traversability analysis module which assesses traversability incorporating with extracted terrain information and fuzzy inference to construct a TM. The potential of the proposed method is validated via simulation works over a set of fractal DTMs.