• Title/Summary/Keyword: 자유진동해석

Search Result 574, Processing Time 0.025 seconds

Free Vibration Analysis of Thin-walled Curved Beams with Unsymmetric Cross-section (비대칭 단면을 갖는 박벽 곡선보의 자유진동 해석)

  • 김문영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.41-54
    • /
    • 1999
  • For free vibration of non-symmetric thin-walled circular arches including restrained warping effect, the elastic strain and kinetic energy is derived by introducing displacement fields of circular arches in which all displacement parameters are defined at the centroid axis. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. Analytical solution for in-plane free vibration behaviors of simply supported thin-walled curved beams with monosymmetric cross-sections is newly derived. Also, a finite element formulation using two noded curved beams element is presented by evaluating elastic stiffness and mass matrices. In order to illustrate the accuracy and practical usefulness of this study, analytical and numerical solutions for free vibration of circular arches are presented and compared with solutions analyzed by the straight beam element and the ABAQUS's shell element.

  • PDF

An Experimental Study on the Free Vibration of Composite Plates with Various Shapes (다양한 형상을 갖는 복합재료 판의 자유진동에 대한 실험적 연구)

  • 이영신;최명환
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 1999
  • This paper describes the results of experiments to analyze the free vibration of the laminated composite and hybrid composite plates with various shapes and boundary conditions. The materials of specimens were the carbon fiber reinforced plastic (CFRP), the glass fiber reinforced plastic (GFRP), the GFRP-Aluminum hybrid composite and the CFRP-CFRP hybrid composite. The natural frequencies and nodal patterns of plates with various shapes were experimentally obtained by impact exciting test using an impact hammer and an accelerometer. The experimental results were presented with normalized frequency parameters. The effects of composite material properties, fiber orientation angles, various geometrical shapes and boundary conditions on the vibration characteristics of composite plates were evaluated. To compare and verify these experimental results, the finite element analysis was carried out, and was well agreed with experimental results.

  • PDF

Improvement of Euler-Bernoulli Beam Theory for Free Vibration and Buckling Analyses via Saint-Venant's Principle (생브낭 원리를 이용한 고전 보 이론의 고유진동수 및 좌굴하중 예측 개선)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.381-387
    • /
    • 2016
  • In this paper, the methodology applied to the improvement of stress analyses is extended to free vibration and buckling analyses. The essence of the methodology is the Saint-Venant's principle that is applicable to beam and plate models. The principle allows one to dimensionally reduce three-dimensional elasticity problems. Thus the methodology can be employed to vibration and buckling as well as stress analysis. First, the principle is briefly revisited, and then the formations of classical beam theories are presented. To improve the predictions, the perturbed terms (unknowns) are introduced together with the warping functions that are calculated by stress equilibrium equations. The unknowns are then calculated by applying the equivalence of stress resultants (i.e., Saint-Venant's principle). As numerical examples, cantilever and simply supported beams are analytically solved. The results obtained are compared with those of the classical beam theories. It is shown that the methodology can be used to improve the predictions without introducing shear correction factors.

Effects of Geometrical Shape on the Free Vibration of Laminated Composite Conical Shells (복합적층 원뿔형 쉘의 자유진동에 관한 기하학적 형상의 영향)

  • Son, Byung Jik;Ji, Hyo Seon;Chang, Suk Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.519-527
    • /
    • 2002
  • Shell structures have become critical in the design of pressure vessels, submarine hulls, ship hulls, airplane structures, concrete roofs, containers for liquids, and many other structures. This study presented the feature of the free vibration of anisotropic laminated conical shells according to transverse shear deformation effects. Composite materials are composed of two or more different materials in order to produce desirable properties for structural strength. Since their behavior is very complex, it is almost impossible to solve the analytical solutions. This effects of subtended and vertex angles and other geometric parameters on vibration were investigated in a comprehensive parametric study. Selected vibration mode shapes were illustrated, to enable the physical understanding of vibration of laminated composite conical shells.

Development of Meshless Method for Free Vibration Analysis of Arbitrarily Shaped Free Plates Using Local Polar Coordinates (지역 극좌표계를 이용한 임의 형상 자유단 평판의 자유진동해석을 위한 무요소법 개발)

  • Kang, Sang-Wook;Atluri, S. N.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.674-680
    • /
    • 2008
  • A new meshless method for obtaining natural frequencies of arbitrarily shaped plates with the free boundary condition is introduced in the paper. In order to improve the characteristics of convergence and accuracy of the method, a special local polar coordinates system is devised and located for each of nodes distributed along the boundary of the plate of interest. In addition, a new way of decreasing the size of the system matrix that gives natural frequencies of the plate is employed to reduce the amount of numerical calculations, which is needed for computing the determinant of the system matrix. Finally the excellence of the characteristics of convergence and accuracy of the method is shown in several case studies, which indicate that natural frequencies by the proposed method are very accurate and converged swiftly to exact values as the number of boundary nodes increases.

Free Vibration Characteristics of the Rectangular Plates under Uniform Thermal Loading Part I. Analytic and FEM analysis (균일 열부가 하중을 받는 사각판의 자유 진동특성 연구 Part I. 이론 및 유한요소 해석)

  • Jeon, Byoung-Hee;Kang, Hui-Won;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.97-105
    • /
    • 2011
  • This paper was conducted on analytical solution using superposition and FEM analysis in the free vibration analysis of rectangular plates under uniform thermal loadings. Materials of three rectangular plates were aluminum, steel and stainless-steel respectively. Applied temperature conditions were from room temperature to $300^{\circ}C$ and boundary condition was free-free condition. Fully symmetric mode(FSM), fully antisymmetric mode(FASM) and symmetric-antisymmetric mode(SAM) were analyzed.

Free Vibration Analysis of the Partial Fuel Assembly Under Water Using Substructure Method (부분구조법을 이용한 부분핵연료 집합체의 수중 자유진동해석)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Jae-Yong;Rhee, Hui-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.246-249
    • /
    • 2006
  • Finite element vibration analysis of the trial 5x5 partial fuel assembly in the still water was performed using the substructure method. ANSYS software was used as a finite element modeling and modal analysis tool. The calculated natural frequencies of the partial fuel assembly were more consistent with the experimental results for the identical test model compared to the much larger solid model. This modeling technique can be utilized for the fuel assembly dynamic behavior analysis under normal operation, seismic and loss-of-coolant-accident analysis.

  • PDF

Calculating Method of FRF with Sub-structure Mode Synthesis Method (부분구조 모드합성법에 의한 주파수응답함수 산출법)

  • Oh, Chang-Guen;Park, Kyung-Il;Park, Sok-Chu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.393-398
    • /
    • 2015
  • A very important part in vibration analysis is to calculate the frequency response function (FRF). In general, a large sized or/and complicated structure has many thousands to millions of degrees. Therefore, the FRF cannot be calculated by the traditional analysis method using an inverse matrix. This paper presents a new FRF calculation method of a superstructure by synthesizing sub-structure modes, of which the DOF can be deduced by partitioning into some sub-structures. To confirm its analysis results, the method was applied to an assembled plate ($B300{\times}L900{\times}t5mm$) with three diagonal sub-plates($B300{\times}L300{\times}t5mm$) in series and compared with the measured data. The test results have were comparable those of the calculated ones with an error less than 5%.

Free Vibration of Vertica Pomp (대형수직펌프의 자유진동해석)

  • 배춘희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.267-272
    • /
    • 2004
  • Vertical pump are widely used owing to the fact that they occupy small floor space. In this type of pumps, however, the vibrational problems are very important, since, in many cases, they have less stiffness in comparison with later pumps. This study presents a simple solution method for calculating the natural frequencies and modes of vertical pumps. In this study, a model of a vertical pump was developed and the nondimensional parameters for the vibrational characteristics of it were determined. Added mass was calculated for the effects of water and the transfer matrix method was used.

  • PDF

Free Vibration Analysis of Arches With General Boundary Condition (일반 경계조건 아치의 자유진동해석)

  • 이태은;이종국;이병구
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.995-999
    • /
    • 2001
  • This paper deals with the free vibrations of arches with general boundary condition. Based on the dynamic equilibrium equations of a arch element acting the stress resultants and the inertia forces, the governing differential equation is derived for the in-plane free vibration of such arches. Differential equations are solved numerically to calculate natural frequencies. In numerical examples, the parabolic arch is considered. The effects of the arch rise to span length ratio, the slenderness ratio, the vertical spring coefficient and the rotational spring coefficient on the natural frequencies are analyzed.

  • PDF