• Title/Summary/Keyword: 자유물체도

Search Result 176, Processing Time 0.022 seconds

Study on the Vortex Shedding Phenomena Near Free Surface (자유수면 근처에서의 보오텍스 방출 현상에 관한 고찰)

  • Seok-Won Hong;Pan-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.118-131
    • /
    • 1991
  • The effects of free surface on vortex shedding phenomena around a bluff body were studied by both numerical simulation and flow visualization experiments. A vortex method, which approximates the vorticity field as the sum of discrete vortices; was used for the numerical simulation. Flow visualization experiments were performed in the KRISO cavitation tunnel. Hydrogen bubble was used as illumination material. Free surface elevation was also measured during experiments. The hydrodynamic drag and lift were predicted by numerical simulation. The predicted period of vortex shedding was compared with the results of experiments.

  • PDF

Development of Simplified Immersed Boundary Method for Analysis of Movable Structures (가동물체형 구조물 해석을 위한 Simplified Immersed Boundary법의 개발)

  • Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.93-100
    • /
    • 2021
  • Since the IB (Immersed Boundary) method, which can perform coupling analysis with objects and fluids having an impermeable boundary of arbitrary shape on a fixed grid system, has been developed, the IB method in various CFD models is increasing. The representative IB methods are the directing-forcing method and the ghost cell method. The directing-forcing type method numerically satisfies the boundary condition from the fluid force calculated at the boundary surface of the structure, and the ghost-cell type method is a computational method that satisfies the boundary condition through interpolation by placing a virtual cell inside the obstacle. These IB methods have a disadvantage in that the computational algorithm is complex. In this study, the simplified immersed boundary (SIB) method enables the analysis of temporary structures on a fixed grid system and is easy to expand to three proposed dimensions. The SIB method proposed in this study is based on a one-field model for immiscible two-phase fluid that assumes that the density function of each phase moves with the center of local mass. In addition, the volume-weighted average method using the density function of the solid was applied to handle moving solid structures, and the CIP method was applied to the advection calculation to prevent numerical diffusion. To examine the analysis performance of the proposed SIB method, a numerical simulation was performed on an object falling to the free water surface. The numerical analysis result reproduced the object falling to the free water surface well.

Efficient Haptic Interaction for Highly Complex Object Generated by Point-based Surfaces (점 기반 곡면으로 이루어진 복잡한 가상 물체와의 효율적인 햅틱 상호작용)

  • Lee, Beom-Chan;Kim, Duck-Bong;Park, Hye-Shin;Kim, Jong-Phil;Lee, Kwan-Heng;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.70-75
    • /
    • 2007
  • 본 논문은 연결정보(connectivity) 및 미리 계산된 계층적 데이터 구조(hierarchical data structure)를 이용하지 않는 그래픽 및 햅틱 렌더링 알고리즘을 제안한다. 제안된 알고리즘은 점 기반 그래픽 표현(point-based graphic representation) 기법을 이용하여 3차원 자유 곡면을 생성한다. 생성된 점 기반 곡면 물체와의 햅틱 상호작용을 위해 그래픽 하드웨어(GPU)에 접근하여 점 기반 곡면에서 생성된 깊이 이미지(depth image)를 이용하여 햅틱 상호작용에 필수 요소인 충돌검출(collision detection) 및 반력 연산(contact force computation)을 수행한다.

  • PDF

Contact Modeling of Arbitrary Shaped Bodies in Space (공간상에서 자유 곡면 물체의 접촉 모델링)

  • Park, Su-Jin;Shin, Ki-Bong;Sohn, Jeong-Hyun;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.544-550
    • /
    • 2003
  • The contact analyses of arbitrary shaped spatial bodies are important in the study of multi-body dynamics. This paper presents a method fur calculating contact force between bodies in space. At each integration time step, the proposed method finds potential contact points on bodies and then calculates the penetration, the velocity of penetration, and the contact force. A continuous analysis method is adopted to calculate the contact force. To get contact points accurately on their outlines, a new algorithm is developed. The proposed algorithm is tested and compared the results of DADS. As applications, the contact of two steel balls, spatial pendulums, and the problem of a ball and bat are demonstrated.

The Numerical Calculation of the Velocity Components Induced by a Havelock Source (Havelock Source에 의한 유기 속도 성분의 수치 계산)

  • Seon-Hyung Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.43-54
    • /
    • 1992
  • A method of evaluating the velocity components induced by a Havelock source is presented in this paper. The mathematical manipulation of x, y and z-derivative of the Green function of the Havelock source by the use of contour integration on the complex plane has resulted in the expressions that can be readily incorporated with computer program. The accuracy and efficiency that can be secured by the use of the present mathematical expressions have been convincingly found to be highly satisfactory.

  • PDF

A Study on Traffic Accident Detection by Semantic Representation (의미적 표현을 통한 교통사고 검출에 관한 연구)

  • Renjie Jin;Yunsick Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.507-509
    • /
    • 2023
  • 최근 딥러닝은 도로 CCTV 동영상의 교통사고 검출에 널리 사용되지만 일인칭 동영상의 교통사고 검출은 분명히 어렵다. 일인칭 동영상은 역동적이고 시야가 제한되어 있기 때문이다. 본 논문에서는 일인칭 동영상을 분석하여 교통사고를 검출하는 방법을 제시한다. 이 방법은 교통 표현 특성을 분석하는 것 외에도 의미를 이해하고 교통 장면을 인코딩한다. 프레임의 표현 특징은 각 프레임 상의 물체의 특징과 물체의 위치 관계의 공간적 숨겨진 특진을 학습함으로써 얻어진다. 그 후에 프레임 표현 특징과 교통 장면의 특징이 연결되어 GRU 실행기에 공급된다. 여러 GRU 실행기는 분석한 후 사고가 발생했는지 확인된다. 이 방법은 높은 역학과 제한된 시야 문제를 효과적으로 해결한다.

Free-wing Tilt-body Aircraft Controllerability Analysis (자유날개 동체꺾임형 항공기의 조종성 해석)

  • Park, Wook-Je
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics such as short take-off and landing capability, and reduced sensitivity to gust and center of gravity (CG) change. Due to the main wing separating from the fuselage, the high tiltable empennage, and the stub-wing strongly influencing from the propeller wake, the resulting vehicle aerodynamics and flight dynamics are quite different from those of a conventional fixed-wing aircraft. Using the governing flight dynamics model was studied previously, all of speed and body tilt angle is simulated to determine the flight envelope by a non-linear 3-DOF flight simulation analysis. Though flight performance and trimmability are studied, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics that distinguishes free-wing tilt-body aircraft from the conventional aircraft.

Free-wing Tilt-body Aircraft Controllerability Analysis for Change of Center of Gravity (무게중심 변화에 따른 자유날개 동체꺾임형 항공기의 조종성 해석)

  • Park, Wook-Je
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.1-5
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics for center of gravity (CG) change. All of speed, body tilt angle and center of gravity change are simulated to determine the flight envelope by a non-linear 3-DOF mathematical model. In flight, this aircraft configuration changes by the tiltable empennage. Then, flight dynamics distinguishes from those of a conventional fixed-wing aircraft. Though flight performance and trimmability are studied by CG change, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics by CG change that distinguishes free-wing tilt-body aircraft from the conventional aircraft.

A Study on Modular 6-DOF manipulator for Intelligrnt Object Control based on Deep Learning and ROS (딥러닝과 ROS 기반의 지능적 객체 제어가 가능한 모듈형 6자유도 매니퓰레이터의 설계)

  • Kim, Kyu-Tae;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.529-532
    • /
    • 2021
  • 본 논문은 서비스 로봇 분야에서 역할을 수행하는 ROS 및 딥러닝 기반 모듈형 6자유도 매니퓰레이터의 설계 방법 및 성능 개선 결과를 제시한다. 기구적 설계, 모터 선정, 역 기구학 해석 방법 및 지능적 제어 방법에 대한 개선점과 향후 연구과제에 대해 다루었다. 특히 고정된 작업 반경 안에 있는 물체를 검출하고 이동시키는 방법을 딥러닝학습에 의해 정확도를 증가시키며, 임의의 위치에 존재하는 다양한 작업환경에서도 성공적인 작업수행이 가능하도록 수직 다관절 모듈형 매니퓰레이터를 설계하고 주요 성능을 검증하였으며 사용자의 사용 목적에 맞게 다양한 환경에서의 임무 수행이 가능하도록 설계하였다.

Study on the Free Surface Behavior Using the Lattice Boltzmann Method (격자볼츠만법을 이용한 자유수면 거동 특성 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • The boltzmann equation is based on the particle distribution function while the Navire-Stokes equation based on the continuum theory. In order to simulate free surface flow, this paper used the Lattice Boltzmann Method of which is the discretized form. The detail study on the characteristics of the Lattice Boltzmann Method for the free surface simulation was investigated. The developed code was validated with the traditional dam breaking problem by tracking the front position of the water. A basic roles of density functions in the Lattice Boltzmann Method is discussed. To have an engineering applications, the simulation is also conducted the free surface behavior with an arbitrary wall geometry.