• 제목/요약/키워드: 자연어

검색결과 1,208건 처리시간 0.033초

딥러닝과 Char2Vec을 이용한 문장 유사도 판별 (The Sentence Similarity Measure Using Deep-Learning and Char2Vec)

  • 임근영;조영복
    • 한국정보통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.1300-1306
    • /
    • 2018
  • 본 연구는 자연어 처리 문제 중 하나인 문장 유사도 판별 문제를 딥러닝으로 해결하는 데에 있어 Char2Vec기반으로 문장을 전 처리하고 학습시켜 그 성능을 확인하고 대표적인 Word Embedding 모델 Word2Vec를 대체할 수 있는 가능성이 있는지 파악하고자 한다. 임의의 두 문장을 비교할 때 쓰는 딥러닝 구조로 Siamese Ma-STM 네트워크를 사용하였다. Word2Vec와 Char2Vec를 각각 기반으로 한 문장 유사도 판별 모델을 학습시키고 그 결과를 분석하였다. 실험 결과 Char2Vec를 기반으로 학습시킨 모델이 validation accuracy 75.1%을 보였고 Word2Vec를 기반으로 학습시킨 모델은 validation accuracy 71.6%를 보였다. 따라서 고 사양을 요구하는 Word2Vec대신 임베딩 레이어를 활용한 Char2Vec 기반의 전처리 모델을 활용함으로 분석 환경을 최적화 할 수 있다.

유사도 측정 기법을 이용한 효율적인 요구 분석 지원 시스템의 구현 (Implementation of an Efficient Requirements Analysis supporting System using Similarity Measure Techniques)

  • 김학수;고영중;박수용;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권1호
    • /
    • pp.13-23
    • /
    • 2000
  • 소프트웨어가 점점 복잡해지고 대형화됨에 따라서 사용자의 요구가 매우 다양해지고 있으며, 제품에 대한 기대 수준도 높아지고 있다. 그러므로, 사용자의 요구 사항을 정확히 분석하여 효과적으로 개발 단계에 적용하는 것은 매우 중요하다. 본 논문에서는 자연어로 표현되는 요구 사항 문서의 분석 시에 나타나는 오류를 효과적으로 줄이고, 수정하는데 사용될 수 있는 요구 분석 시스템을 제안한다. 제안된 시스템은 문서간 유사도 측정에 의해서 문서간의 의존성(dependency) 분석을 지원하고 문장간 유사도 측정에 의해서 요구 사항간의 연계성(traceability), 중복성(redundancy), 불일치성(inconsistency), 그리고 불완전성(imcompleteness)을 발견하는 것을 지원한다. 또한 모호한 문장을 추출하여 요구사항의 불명확성 (ambiguity)을 발견하는 기능도 제공한다. 문서간 유사도 측정을 위해서 사용된 색인 방법은 슬라이딩 윈도우 모델과 의존 구조 모델을 결합한 것으로 각 모델이 가지는 단점을 효과적으로 보완할 수 있다. 본 논문에서는 문서간, 문장간 유사도 측정 기법의 효율성을 실험을 통해 검증하였으며 구현된 시스템을 통해 분석 처리되는 과정을 보여주고 있다.

  • PDF

랜덤 포레스트를 이용한 한국어 상호참조 해결 (Coreference Resolution for Korean Using Random Forests)

  • 정석원;최맹식;김학수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.535-540
    • /
    • 2016
  • 상호참조 해결은 문서 내에 존재하는 멘션들을 식별하고, 참조하는 멘션끼리 군집화하는 것으로 정보 추출, 사건 추적, 질의응답과 같은 자연어처리 응용에 필수적인 과정이다. 최근에는 기계학습에 기반한 다양한 상호참조 해결 모델들이 제안되었으며, 잘 알려진 것처럼 이런 기계학습 기반 모델들은 상호참조 멘션 태그들이 수동으로 부착된 대량의 학습 데이터를 필요로 한다. 그러나 한국어에서는 기계학습 모델들을 학습할 가용한 공개 데이터가 존재하지 않는다. 그러므로 본 논문에서는 다른 기계학습 모델보다 적은 학습 데이터를 필요로 하는 효율적인 상호참조 해결 모델을 제안한다. 제안 모델은 시브-가이드 자질 기반의 랜덤 포레스트를 사용하여 상호참조하는 멘션들을 구분한다. 야구 뉴스 기사를 이용한 실험에서 제안 모델은 다른 기계학습 모델보다 높은 0.6678의 CoNLL F1-점수를 보였다.

닷큐어리를 활용한 대화형 검색 에이전트 (An Interactive Search Agent based on DotQuery)

  • 김선옥
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.271-281
    • /
    • 2006
  • 인터넷의 발달로 웹상에 수많은 문서와 웹서비스가 급격히 증가하고 있다. 인터넷 사용자들은 웹에서 원하는 정보와 서비스를 획득하기 위해서는 각종 브라우저에서 여러 단계의 프로그램 조작 절차를 반복하고 사이트마다 고유의 서비스 구조들을 이해한 상태에서 여러 번의 방문 절차들을 거쳐야 한다. 이러한 절차들은 사용자에게 꼭 필요한 선행 작업이며, 사용자가 실제로 서비스 획득에 걸리는 시간보다도 선행 작업에 소요되는 시간이 더 큰 게 현실이다. 이러한 시간소요를 극복하기 위해 단순 반복적인 작업을 보다 체계화하고 단순화하기 위한 방안으로 닷큐어리 기반의 대화형 검색 에이전트를 제안한다. 제안하는 에이전트는 사용자의 컴퓨터에서 자연어 명령을 포함하는 닷큐어리를 통해 인터넷 사이트가 제공하는 다양한 서비스를 획득하는데 소요되는 여러 절차들을 대행하게 하고, 다수의 웹사이트에 대한 병렬 서비스들 또한 대행하게 한다. 이 에이전트는 IE와 같은 범용브라우저 내에 플러그 인되어 닷큐어리를 해독하며, 자체 프로그램을 통하여서도 사용자가 지시한 닷큐어리를 분석하여, 복수의 자체브라우저들을 통해 서비스 결과를 획득하도록 구성하였다.

  • PDF

Analyzing Correlations between Movie Characters Based on Deep Learning

  • Jin, Kyo Jun;Kim, Jong Wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권10호
    • /
    • pp.9-17
    • /
    • 2021
  • 인간은 사회적인 동물로서, 대화로써 정보를 얻거나 사회적인 교류를 해왔다. 대화는 두 사람 이상의 작은 모임에서 서로 말을 편하게 주고받는 것으로, 한 사람이 다른 사람에게 가지는 감성에 따라 그 말의 분위기가 달라질 수 있다. 영화에서 인물들과 인물들이 펼치는 이야기는 중요한 요소로 작용하며, 인물들 간의 관계는 이야기와 인물 간의 대사를 이해하는데 꼭 필요하다. 그러나 이런 정보를 영화에서 자동으로 추출하는 방법은 아직까지 연구되지 않아서 관객들에게 제공되고 있지 못하고 있다. 따라서, 영화 속 양상을 자동으로 분석하는 모델이 필요하다. 본 논문에서는 딥 러닝 기법을 활용하여 각 영화 등장 인물들 간의 감성을 측정하여 영화 속 인물들 간의 관계를 효과적으로 분석하는 방법을 제안한다. 제안 방법은 먼저 영화 대본으로부터 주요 인물들을 추출하고, 주요 인물들 간의 대화를 효과적으로 찾는다. 그런 다음, 주요 인물들 간의 관계를 분석하기 위하여, 감성 분석을 수행하여 전체 시간 간격 내 대사의 위치에 따라 가중치를 부여하고 점수를 수집한다. 또한, 실데이터를 이용한 실험을 통하여 제안 기법이 효과적으로 영화 등장 인물들 간의 감성을 분석할 수 있음을 보인다.

딥러닝 기반 한국어 맞춤법 교정을 위한 오류 유형 분류 및 분석 (Classification and analysis of error types for deep learning-based Korean spelling correction)

  • 구선민;박찬준;소아람;임희석
    • 한국융합학회논문지
    • /
    • 제12권12호
    • /
    • pp.65-74
    • /
    • 2021
  • 최근 기계 번역 기술과 자동 노이즈 생성 방법론을 기반으로 한국어 맞춤법 교정 연구가 활발히 이루어지고 있다. 해당 방법론들은 노이즈를 생성하여 학습 셋과 데이터 셋으로 사용한다. 이는 학습에 사용된 노이즈 외의 노이즈가 테스트 셋에 포함될 가능성이 낮아 정확한 성능 측정이 어렵다는 한계점이 존재한다. 또한 실제적인 오류 유형 분류 기준이 없어 연구마다 사용하는 오류 유형이 다르므로 질적 분석에 어려움을 겪고 있다. 이를 해결하기 위해 본 논문은 딥러닝 기반 한국어 맞춤법 교정 연구를 위한 새로운 '오류 유형 분류 체계'를 제안하며 이를 바탕으로 기존 상용화 한국어 맞춤법 교정기(시스템 A, 시스템 B, 시스템 C)에 대한 오류 분석을 수행하였다. 분석결과, 세 가지 교정 시스템들이 띄어쓰기 오류 외에 본 논문에서 제시한 다른 오류 유형은 교정을 잘 수행하지 못했으며 어순 오류나 시제 오류의 경우 오류 인식을 거의 하지 못함을 알 수 있었다.

전이학습 기반 기계번역 사후교정 모델 검증 (The Verification of the Transfer Learning-based Automatic Post Editing Model)

  • 문현석;박찬준;어수경;서재형;임희석
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.27-35
    • /
    • 2021
  • 기계번역 사후교정 (Automatic Post Editing, APE)이란 번역 시스템을 통해 생성한 번역문을 교정하는 연구 분야로, 영어-독일어와 같이 학습데이터가 풍부한 언어쌍을 중심으로 연구가 진행되고 있다. 최근 APE 연구는 전이학습 기반 연구가 주로 이루어지는데, 일반적으로 self supervised learning을 통해 생성된 사전학습 언어모델 혹은 번역모델이 주로 활용된다. 기존 연구에서는 번역모델에 전이학습 시킨 APE모델이 뛰어난 성과를 보였으나, 대용량 언어쌍에 대해서만 이루어진 해당 연구를 저 자원 언어쌍에 곧바로 적용하기는 어렵다. 이에 본 연구에서는 언어 혹은 번역모델의 두 가지 전이학습 전략을 대표적인 저 자원 언어쌍인 한국어-영어 APE 연구에 적용하여 심층적인 모델 검증을 진행하였다. 실험결과 저 자원 언어쌍에서도 APE 학습 이전에 번역을 한차례 학습시키는 것이 유의미하게 APE 성능을 향상시킨다는 것을 확인할 수 있었다.

병렬 말뭉치 필터링을 적용한 Filter-mBART기반 기계번역 연구 (Filter-mBART Based Neural Machine Translation Using Parallel Corpus Filtering)

  • 문현석;박찬준;어수경;박정배;임희석
    • 한국융합학회논문지
    • /
    • 제12권5호
    • /
    • pp.1-7
    • /
    • 2021
  • 최신 기계번역 연구 동향을 살펴보면 대용량의 단일말뭉치를 통해 모델의 사전학습을 거친 후 병렬 말뭉치로 미세조정을 진행한다. 많은 연구에서 사전학습 단계에 이용되는 데이터의 양을 늘리는 추세이나, 기계번역 성능 향상을 위해 반드시 데이터의 양을 늘려야 한다고는 보기 어렵다. 본 연구에서는 병렬 말뭉치 필터링을 활용한 mBART 모델 기반의 실험을 통해, 더 적은 양의 데이터라도 고품질의 데이터라면 더 좋은 기계번역 성능을 낼 수 있음을 보인다. 실험결과 병렬 말뭉치 필터링을 거친 사전학습모델이 그렇지 않은 모델보다 더 좋은 성능을 보였다. 본 실험결과를 통해 데이터의 양보다 데이터의 질을 고려하는 것이 중요함을 보이고, 해당 프로세스를 통해 추후 말뭉치 구축에 있어 하나의 가이드라인으로 활용될 수 있음을 보였다.

A study on the Extraction of Similar Information using Knowledge Base Embedding for Battlefield Awareness

  • Kim, Sang-Min;Jin, So-Yeon;Lee, Woo-Sin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권11호
    • /
    • pp.33-40
    • /
    • 2021
  • 고도화된 무기체계와 복잡한 전략으로 인하여 지휘관이 분석하고 판단해야 할 정보의 복잡도가 증가하고 있다. 지휘관의 적시적 판단을 위해서 전장의 정보를 지식화하고 분석할 수 있는 지능형 서비스가 필요하다. 지능형 서비스는 전장상황 정보로부터 지식을 추출하는 단계와 지식베이스를 구축하는 단계, 지식베이스로부터 전장상황을 분석하는 단계로 구성된다. 본 논문은 두 번째 단계에서 구축 완료된 지식베이스를 임베딩함으로써 입력 쿼리와 유사한 정보를 추출하는 방안을 연구한다. 지식베이스 임베딩을 위해 문장화 과정이 필요하며 random-walk 알고리즘을 적용한다. 문장화된 정보는 Word2Vec을 활용하여 벡터화되고 코사인 유사도를 통해 입력 쿼리와 유사한 정보를 찾는다. 본 논문에서는 오픈 지식베이스로부터 98개 개체를 기준으로 980개의 문장을 생성하고 100차원의 벡터로 임베딩함으로써 코사인 유사도 기반 유사 개체가 추출됨을 확인했다.

전통 문화 데이터를 이용한 메타 러닝 기반 전역 관계 추출 (Meta Learning based Global Relation Extraction trained by Traditional Korean data)

  • 김규경;김경민;조재춘;임희석
    • 한국융합학회논문지
    • /
    • 제9권11호
    • /
    • pp.23-28
    • /
    • 2018
  • 최근 존재하는 대부분의 관계 추출 모델은 언급 수준의 관계 추출 모델이다. 이들은 성능은 높지만, 장문의 텍스트에 존재하는 다수의 문장을 처리할 때, 문서 내에 주요 개체 및 여러 문장에 걸쳐서 표현되는 전역적 개체 관계를 파악하지 못한다. 그리고 이러한 높은 수준의 관계를 정의하지 못하는 것은 데이터의 올바른 정형화를 막는 중대한 문제이다. 이 논문에서는 이러한 문제를 해결하고 전역적 관계를 추출하기 위하여 외부 메모리 신경망 모델을 이용하는 새로운 방식의 전역관계 추출 모델을 제안한다. 제안하는 모델은 1차적으로는 단편적인 관계 추출을 실행한 뒤, 외부메모리 신경망을 이용하여 단편적인 관계들을 분석 및 종합하여 텍스트 전체로부터 전역적 관계들을 추출한다. 또한 제안된 모델은 외부 메모리를 통하여 전역적 관계 추출 외에도 주어와 목적어 생략이 잦은 한국어 관계 추출에도 뛰어난 성능을 보인다.