• Title/Summary/Keyword: 자속 밀도

Search Result 289, Processing Time 0.031 seconds

Study of Paprika Growth Characteristic on Covering Selective Light Transmitting Filter in Greenhouse (선택적 광 투과에 따른 파프리카 생육특성 연구)

  • Kang, D.H.;Kim, D.E.;Lee, J.W.;Hong, S.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2021
  • This study aimed to a basic research for the development of dye-sensitized solar cells that the wavelength band required for crop growth is passed, and the wavelength band that is not necessary for crop growth can be used for the generation of electricity. The transmissivity according to the illuminance was about 10% higher in the Blue filter and the Green filter than in the Red filter, but the transmissivity according to the PPFD was about 10% higher in the Red filter and the Blue filter than in the Green filter. In addition, the greenhouse attached with 30% infrared blocking filter was predicted to have a lower air temperature than other greenhouses, but it was investigated that there was no significant difference. Therefore, it was investigated that the application of the infrared cut filter would not be appropriate in a greenhouse that controls the temperature by opening a window. As a result of investigating, it was found that the Green and Blue filter greenhouses had the severe overgrowth and the stems grew weaker. The fresh weight of paprika in the infrared blocking filter greenhouse was the highest at 678.9g, and the growth of Red filter and the control greenhouses was relatively poor. Photosynthetic rate, amount of transpiration, and stomatal conductivity were the infrared blocking filter and control greenhouse higher than others. On the other hand, the water use efficiency did not show a big difference.

Effects of the Daylight Disturbance on the Growth and Yield of Cut Flower Rose 'Monet' (Rosa hybrida cv. 'Monet') (일조방해가 절화 장미의 생육 및 수량에 미치는 영향)

  • Yuri, Lee;Sang Kun, Park
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.30-34
    • /
    • 2022
  • This study was carried out to analyze the effect of changes in the light environment caused by the daylight disturbance on the productivity and quality of the standard cut flower rose cultivar 'Monet'. It was artificially shaded to obstruct the sunlight and the productivity and growing characteristics of roses according to the time of daylight disturbance were investigated. The number of cut flowers per unit area (3.3m2) of the cut flower rose 'Monet' was 40 stems in the control, while in the 4-hour, 8-hour, and 12-hour treatments, it was 32, 29, and 25, respectively. As the daylight disturbance time was increased, the number of cut flowers showed a tendency to decrease. In the case of cut flower characteristics related to the quality of cut roses, all characteristics such as flower width, flower height, petal length, and petal width, decreased by 10 to 20% in the 12-hour treatment compared to the control. In addition, growth characteristics such as peduncle length, peduncle thickness, and cut flower height, which determine the marketability of cut roses, also tended to decrease as the daylight disturbance time increased. On the other hand, the number of days to flowering increased by 14.0% from 24.3 to 27.7. The overall growth characteristics were contracted and flowering was delayed as the time of daylight disturbance increased. In the results of this study, as the daylight disturbance time increased, flower size, cut flower length, and fresh weight was decreased. This is due to the decrease in the total photosynthetic amount as the daily average photosynthetic photon flux density (PPFD) was decreased, resulting in a decrease in the quality of roses. It is judged that it is because they do not receive enough carbohydrates necessary for growth and development.

Efficiency of Closed Cutting Propagation Affected by Closed Periods, Leaflet Number and Photoperiod in Rose (Rosa hybrida) (밀폐 기간, 소엽수 및 광주기에 따른 장미의 밀폐삽목 번식 효율)

  • Yang, Gyeong Rok;Jung, Hyun Hwan;Park, Ki Young;Song, Kwan Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.212-220
    • /
    • 2022
  • When it comes to single node leafy stem cuttings of rose (Rosa hybrida), environmental management such as air temperature, relative humidity, and light affect productivity. In order to investigate the effect of air temperature and relative humidity on the cutting success rate and rooted cuttings quality, a transparent airtight box was used to implement a closed system. We have also tried to find out the most effective photoperiod and the number of leaflets in closed system using artificial light (white LED, 104.0 µmol·m-2·s-1 photosynthetic photon flux density). The first experiment was conducted for a total of 6 weeks under 4 airtight period conditions. The number of roots and longest root length decreased as the airtight period increased. But there were no significant differences in the survival rate, shooting rate, and rooting rate according to airtight periods. In the second experiment the results indicated that survival and shooting rate were significantly affected by the photoperiod (0/24, 2/22, 4/20, 8/16, and 16/8 h), the number of leaflets (0, 2, and 4 leaflets) of the cuttings and their interaction. The survival rate was the highest in the 16-h day length and 4 leaflets. By considering survival rate and shooting rate with energy efficiency, the 8-h day length and 2 or 4 leaflets were judged to be the most effective.

An Efficient Method for Establishing Canopy Photosynthesis Curves of Lettuce (Lactuca sativa L.) with Light Intensity and CO2 Concentration Variables Using Controlled Growth Chamber (생육 챔버를 이용하여 광도 및 이산화탄소 농도 변수를 갖는 상추(Lactuca sativa L.)의 군락 광합성 곡선의 효율적 도출 방법)

  • Jung, Dae Ho;Kim, Tae Young;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2020
  • For developing a canopy photosynthesis model, an efficient method to measure the photosynthetic rate in a growth chamber is required. The objective of this study was to develop a method for establishing canopy photosynthetic rate curves of romaine lettuce (Lactuca sativa L.) with light intensity and CO2 concentration variables using controlled growth chamber. The plants were grown in plant factory modules, and the canopy photosynthesis rates were measured in sealed growth chambers made of acrylic (1.0 × 0.8 × 0.5 m). First, the canopy photosynthetic rates of the plants were measured, and then the time constants were compared between two application methods: 1) changing light intensity (340, 270, 200, and 130 μmol·m-2·s-1) at a fixed CO2 concentration (1,000 μmol·mol-1) and 2) changing CO2 concentration (600, 1,000, 1,400, and 1,800 μmol·mol-1) at a fixed light intensity (200 μmol·m-2·s-1). Second, the canopy photosynthetic rates were measured by changing the light intensity at a CO2 concentration of 1,000 μmol·mol-1 and compared with those measured by changing the CO2 concentration at a light intensity of 200 μmol·m-2·s-1. The time constant when changing the CO2 concentration at the fixed light intensity was 3.2 times longer, and the deviation in photosynthetic rate was larger than when changing the light intensity. The canopy photosynthetic rate was obtained stably with a time lag of one min when changing the light intensity, while a time lag of six min or longer was required when changing the CO2 concentration. Therefore, changing the light intensity at a fixed CO2 concentration is more appropriate for short-term measurement of canopy photosynthesis using a growth chamber.

Growth and Physiological Characteristics of Five Common Foliage Plant Species Grown under the Influence of Static Magnetic Field (정자기장 처리에 따른 실내 관엽식물의 생육 및 생리적 특성 변화)

  • Lee, Seong Han;Woo, Su Young;Kwak, Myung Ja
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The present study aimed to investigate the effect of static magnetic field (SMF) on the growth and physiological characteristics of common indoor plant species. Five foliage plant species, Spathiphyllum spp., Ardisia pusilla DC., Syngonium podophyllum, Peperomia pereskiifolia, and Pilea cadierei were potted into plastic pot equipped with round type anisotropic sintered NdFeB permanent magnet inside the pot. The surface magnetic flux density of each magnet was 3,500 G. After 6 months of growth period, the biomass accumulations of Spathiphyllum, A. pusilla, and P. cadierei under SMF were statistically higher than those of controls. Tissue water content also increased under the influence of SMF in most species. The photosynthetic rate of Spathiphyllum under SMF significantly increased but other species showed no significant difference compared with control. Although there was no significant increase in the photosynthetic rates of A. pusilla, and P. cadierei, they showed remarkable increase in total fresh weight under SMF. This suggests that the demand of assimilates for normal metabolism could be decreased under magnetic influence and thereby biomass accumulation could be more favored. But this is not always true for all plant species because P. pereskiifolia in this experiment, showed no changes in both photosynthetic rate and biomass accumulation. Leaf nitrogen and chlorophyll contents were enhanced significantly in most plant species under influence of SMF. Chlorophyll a/b ratio also increased by SMF. Although there might be a limitation depending on plant species, these results suggest that long-term exposure to SMF might allow plant to have an enhanced acclimation capacity against environmental fluctuations and optimal application of SMF could increase the practical use of indoor plants such as an attempt to improve indoor air quality.

Post-harvest LED and UV-B Irradiation Enhance Antioxidant Properties of Asparagus Spears (수확 후 LED와 UV-B 조사에 의한 아스파라거스 순의 항산화 기능 향상)

  • Yoo, Nam-Hee;Jung, Sun-Kyun;Lee, Chong Ae;Choi, Dong-Geun;Yun, Song Joong
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.188-198
    • /
    • 2017
  • Asparagus (Asparagus officinalis L.) spears were treated with white (color temperature 4,500 k), blue (peak 450 nm), and red (peak 660 nm) light-emitting diodes (LEDs) at a photosynthetic photon flux density (PPFD) of $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for 12 h, and UV-B (280 nm) at 0.5 kJ or 1.0 kJ to determine the effect on agronomic characteristics, antioxidant phytochemicals, and antioxidant activity. The fresh weight, length, and width of spears were not affected by light quality treatments. The free sugars and chlorophyll contents were increased by 9 and 41%, respectively in the UV-0.5 kJ treatments. Among the antioxidant phytochemicals (vitamin C, total phenol, rutin, and total flavonoid), vitamin C was most greatly affected by the light treatments. Vitamin C content was significantly increased in asparagus spears subjected to the white (114%), red (137%), and UV-0.5 kJ(127%) treatments compared to the control. By contrast, rutin, total phenol, and total flavonoid content were increased only in samples subjected to the red and UV-0.5 kJ treatment. Furthermore, antioxidant activity, as measured by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, increased in white, red, and UV-0.5 kJ treatments by about 43, 41, and 43%, respectively, compared to the control. These results suggest that postharvest treatment of asparagus spears with red light at $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for 12 h or with UV-B (280 nm) at 0.5 kJ could enhance the functional quality of the asparagus spears by increasing the content of phytochemicals like vitamin C, rutin, total phenolics, and total flavonoids.

Growth Characteristics of Lettuce under Different Frequency of Pulse Lighting and RGB Ratio of LEDs (LED의 간헐조명과 RGB 비율에 따른 상추의 품종별 생육 특성)

  • Kim, Sungjin;Bok, Gwonjeong;Lee, Gongin;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • This study was aimed to investigate the effect of 1)irradiation with several different ratios using red, green, and blue LEDs and 2)various pulsed light irradiation with 50% duty ratio using red and blue LEDs on the growth and morphogenesis of three lettuce cultivars (Lactuca sativar L. cv. 'Jukchukmeon', 'Lolo Rosa', and 'Grand Rapid') in hydroponics culture system for 4 weeks after transplanting. Seeds were sown in rock-wool plug trays and they were placed in a culture room which was controlled at $23{\pm}1^{\circ}C/18{\pm}1^{\circ}C$ temperature and 50-60/70-85% for day and night, respectively, during cultivation period. Irradiated RGB ratios with LEDs were 6:3:1, 5:2.5:2.5, 3:3:4, 2:2:6, and 1:1:8 with $110{\pm}3{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD on the surface of cultivation bed. The frequencies of pulsed lighting was 50, 100, 500, 1,000, 5,000, 10,000, 25,000Hz (20, 10, 0.1, 0.04 ms) with red and blue LEDs and 50% duty ratio. At the RGB ratio of 6:3:1, the average fresh weight of 'Jukchukmeon' was significantly higher than that of other RGB treatments, but no significant difference compared to the fluorescent treatment. The average fresh weight at 1:1:8 RGB ratio in 'Lolo Rosa' was significantly lower than that of other RGB treatments. Leaf number and fresh weight of 'Grand Rapid' were significantly lower in the control and 1:1:8 RGB treatments, compared to the other RGB treatments. As the ratio of blue light increased, leaf length decreased and leaf shape became round in three lettuces. Although there is little change in growth, it could not be found any tendency to affect the growth and morphogenesis of three lettuces caused by increasing or decreasing frequency of pulsed lighting with 50% duty ratio at the $72{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD.

Analysis of Antioxidant Content and Growth of Agastache rugosa as Affected by LED Light Qualities (LED 광질 조건에 따른 배초향 생장 및 항산화 물질 함량 분석)

  • Kim, Sungjin;Bok, Gwonjeong;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.260-268
    • /
    • 2018
  • The aim of this study was to evaluate the effect of light quality using either monochromatic or combined LEDs on the growth and antioxidant accumulation of Agastache rugosa cultivated under hydroponics for 4 weeks. This experiment was performed in a controlled-environment room at $22{\pm}1^{\circ}C$ and $18{\pm}1^{\circ}C$ (day and night temperatures, respectively) and 50-70% relative humidity, with a provided photosynthetic photon flux density (PPFD) of $180{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and irradiated with either monochromatic (W10 and R10) or mixed LEDs (W2B1G1, R3B1, R2B1G1, and W2B1G1) with a differing ratio of each LED's PPFD and fluorescent lighting (FL: control) with a 16/8 h photoperiod. Fresh and dry weights were highest for plants grown under the W2B1G1 treatment. A. rugosa grown with R10 had the greatest plant height but the lowest SPAD among all treatments. The concentration of rosmarinic acid in plants grown under W2B1G1 was significantly higher than that of plants grown under other treatments. Tilianin content was significantly higher in R3B1 than in the other treatments. However, whole-plant rosmarinic acid and tilianin content was the highest under the W2B1G1 condition. To cultivate A. rugosa in a plant factory, mixed-LED light conditions with W2B1G1 is considered to be more advantageous for the growth and antioxidant accumulation of A. rugosa. It is though that the total whole-plant antioxidant content is more crucial for commercial use; the present study demonstrates the potential to achieve higher content of functional materials in plants through the selection of light quality.

Effect of Shading Methods on Growth and Fruit Quality of Paprika in Summer Season (파프리카 여름재배시 차광방법이 생육과 과실특성에 미치는 영향)

  • Ha, Jun Bong;Lim, Chae Shin;Kang, Hyo Yong;Kang, Yang Su;Hwang, Seung Jae;Mun, Hyung Su;An, Chul Geon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.419-427
    • /
    • 2012
  • This study was carried out to investigate the effect of two shading methods, shading agent spray on the glasshouse and internal shading screen treatment, on the growth and fruit quality of paprika (Capsicum annuum L. 'Cupra' and 'Coletti') in summer season cultivation. In the shading agent treatment, a commercial shading agent diluted with water at a ratio of 1 : 4 was sprayed on the roof of a glasshouse. In the internal shading screen treatment, a 10~20% shaded screen was used during the day time when the sun radiation was greater than $700W{\cdot}m^{-2}$. Compared to the unshaded control, photosynthetic photon flux density (PPFD) decreased in the greenhouse in the shading agent (SA) and shading screen (SS) treatments by 20% and 30%, respectively. Lower air temperatures and higher relative humidities were observed in the SA than in both the control and the SS treatment. Time to reach the break point of humidity deficit $8g{\cdot}m^{-3}$ was 2 hours late in the SA than in both the control and the SS treatment. Compared to control, both the SA and the SS treatments showed lower instantaneous temperatures of leaf, fruit, and flower by $2^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively. There were no differences in number of branches, stem diameter, and leaf size among treatments although both shading treatments promoted plant height in both cultivars. Botrytis infection ratio declined with the SA treatment by 14.7% in 'Cupra' and 22.1% in 'Coletti' as compared to that in the control. Shading increased fruit size in both cultivars, whereas no differences were observed in the number of locules and thickness of fruit tissue among treatments. Shading treatment increased mean fruit weight by a range of 10 to 15 g per fruit, while it decreased soluble solids contents as compared to that in the control. Similar Hunter values were observed among treatments, while fruit firmness increased slightly in shading treatments. Compared to the control, shading treatments improved marketable fruits by 11.7~22.6% and increased the number of fruits per plant by 4~9.2 in both 'Cupra' and 'Coletti'. The results of this study indicate that shading agent application on the roof of glasshouse would be one of the most effective options to reduce heat stress imposed on the paprika crop in summer cultivation, resulting in improved crop growth and fruit yield.