• Title/Summary/Keyword: 자세 획득

Search Result 334, Processing Time 0.033 seconds

Designed of High-Speed Camera Using FPGA (FPGA를 이용한 고속카메라 시스템 구현)

  • Park, Sei-Hun;Shin, Yun-Soo;Oh, Tea-Seok;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1935-1936
    • /
    • 2008
  • 본 논문은 High speed image를 획득하기 위하여 CMOS Image Sensor를 사용한 고속카메라 구현에 관한 연구이다. Image Sensor로는 CCD Image Sensor와 CMOS Image Sensor가 있으며 CMOS Image Sensor는 CCD Image Sensor에 비해 전력소모가 적고 주변회로의 내장으로 소형화 할 수 있는 장점이 있다. 고속카메라는 충돌 테스트, 에어벡 제어 등의 자동차 분야와 골프 자세 교정 장치와 같은 스포츠 분야, 탄도 방향 측정 장비 등의 국방 분야 등 여러 분야에 많이 사용되고 있다. 본 논문에서 구현한 고속카메라 시스템은 CMOS Image Sensor를 사용하여 1280 * 1024의 해상도로 초당 약 500 frames의 영상을 획득할 수 있다. 또한 CMOS Image Sensor를 제어하고 획득한 이미지를 저장할 수 있도록 FPGA와 DDR2 메모리를 사용하고 저장된 데이터를 PC로 전송하기 위한 Camera Link 모듈 그리고 PC에서 카메라를 제어할 수 있도록 RS-422 통신기능 등으로 구성되었다.

  • PDF

Categorization of Aspect view direction for 3D object′s Pose Estimation (3차원 물체의 자세정보 추출을 위한 측면 측정방향군의 범주화)

  • 이재영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.508-510
    • /
    • 2001
  • 3차원 물체의 인식과 공간 정보를 추출해 내는 것이 물체인식의 주요 목적이다. 본 논문에서는 평면의 표면을 갖는 기하학적 물체들을 인식하는데 인공신경망이 적용 가능함이 조사되었다. 물체인식을 위한 모델들은 CAD모델들로부터 자동적으로 추출되며, 획득된 물체의 영상과 일치하는 물체의 국면(aspect)과의 매칭은 조건만족 인경신경망을 이용하여 매칭-오차를 최소화시키는 방법을 처리되었다. 인식된 물체의 국면이 어느 방향에서 획득되었는지에 대한 정보(Aspect's view direction)는 검색된 가시 평면들의 분포로부터 추출됨을 ART와 같은 인공신경망을 이용하여 실시간으로 복원할 수 있음을 보였다. 대표적이 측정방향과 이 측정방향으로부터의 편차들을 한 범주에 넣고 학습을 통해 정확한 측정방향 정보들을 구하며, 획득된 3차원 물체의 영상들에 따라 자동적으로 측정방향범주 들이 추가되도록 한다.

  • PDF

A Study of GEO Satellite Identification Using Optical Observation

  • Oh, Youngseok;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.53.1-53.1
    • /
    • 2014
  • 본 연구에서는 고궤도 및 원거리 우주물체의 추적 및 관측이 용이한 광학관측 시스템을 이용하여 정지궤도위성을 관측하였고, 광도곡선 분석을 통해 식별정보를 획득하였다. 정지궤도 위성은 자세에어 방법에 따라 회전 안정화 위성과 3축 안정화 위성으로 나뉘며, 3축 안정화 위성은 다시 통신위성과 지구관측 위성 등으로 나뉜다. 회전 안정화 위성의 식별 연구를 위해 중국의 FY-2 위성을 관측대상으로 선정하였고, 3축 안정화 위성의 식별을 위해 한국의 COMS-1 위성을 관측 대상으로 선정하였다. 회전안정화 위성은 Sidereal Tracking Mode로 관측하면 위성의 궤적이 선 모양으로 나타난다. 이때 나타난 궤적의 pixel value 값을 확인하면 일정한 주기로 밝기가 변화 하는 것을 확인할 수 있으며, FFT를 수행하면 위성의 회전율과 회전 주기를 구할 수 있다. 3축 안정화 위성은 Stare Mode로 관측하여 측광하면 광도곡선을 획득할 수 있다. 위성의 형상을 결정하는 본체, 안테나, 태양전지판을 모델링하여 광도곡선 시뮬레이션결과와 비교하면 각각의 형상이 광도곡선에 미치는 영향과 특징을 알 수 있고, 이를 통해 식별정보를 획득할 수 있다. 이상의 분석을 통해 얻은 FY-2위성과 COMS-1 위성의 식별정보를 제시하고 향후 우주물체 식별 연구에 활용하고자 한다.

  • PDF

Modelling of Image Acquisition Scenario and Verification of Mission Planning Algorithm for SAR Satellite (SAR위성의 영상획득 시나리오 모델링 및 임무설계 알고리즘 성능검증)

  • Shin, Hohyun;Kim, Jongpil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.590-598
    • /
    • 2019
  • Today, satellites are widely used in many fields like communication and image recoding. The image acquired by satellites contains variety information of wide region. Therefore, they are used for agriculture, resource exploitation and management, and military purpose. The satellite is required to acquire images effectively in a given time period. Because the period that satellites can acquire images is very restrictive. In this study, the modeling of processing time and attitude maneuvering for satellite image acquisition is performed. From this modeling, mission planning algorithm using heuristic evaluation function is suggested and performance of the proposed algorithm is verified by numerical simulation.

The Implementation of Visualization Tool for Snowboard Using Kinect Sensor Data (키넥트 센서 데이터를 이용한 스노보드 동작 시각화 도구의 구현)

  • Park, Young-Nam;Seo, Se-Mi;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.53-60
    • /
    • 2013
  • This paper proposed visualization tool for motion of snowboarding using Skeleton data obtained by the Microsoft's Kinect sensor. The BBP(Balanced Body Position) posture is a most basic motion in the Snowboarding. This posture is the primary technology for stable turns. The implementation of visualization tool to analyse the BBP posture of snowboard. comparative analysis with standard postures to the ankles, knees, hips and spine angle of joints and body tracking using coordinate information obtained by the Kinect Sensor. Analysis of the final results of the screen through the OpenGL library. This research result could be used to analysis for turn postures of snowboarding.

Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System (다종 센서 융합의 신뢰성 향상을 통한 쿼드로터 자세 제어)

  • Yu, Dong Hyeon;Park, Jong Ho;Ryu, Ji Hyoung;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.517-526
    • /
    • 2015
  • This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications. We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

Attitudes Estimation for the Vision-based UAV using Optical Flow (광류를 이용한 영상기반 무인항공기의 자세 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.342-351
    • /
    • 2010
  • UAV (Unmanned Aerial Vehicle) have an INS(Inertial Navigation System) equipment and also have an electro-optical Equipment for mission. This paper proposes the vision based attitude estimation algorithm using Kalman Filter and Optical flow for UAV. Optical flow is acquired from the movie of camera which is equipped on UAV and UAV's attitude is measured from optical flow. In this paper, Kalman Filter has been used for the settlement of the low reliability and estimation of UAV's attitude. Algorithm verification was performed through experiments. The experiment has been used rate table and real flight video. Then, this paper shows the verification result of UAV's attitude estimation algorithm. When the rate table was tested, the error was in 2 degree and the tendency was similar with AHRS measurement states. However, on the experiment of real flight movie, maximum yaw error was 21 degree and Maximum pitch error was 7.8 degree.

Attitude Control for Agile Spacecraft Installed with Reaction Wheels (리액션휠 기반 고기동 위성 자세제어 기법 연구)

  • Kim, Taeho;Mok, Sung-Hoon;Bang, Hyochoong;Song, Taeseong;Lee, Jongkuck;Song, Deokki;Seo, Joongbo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.934-943
    • /
    • 2018
  • In these days, demand for agile spacecraft is gradually increasing, due to the fact that agile spacecraft can improve mission capability. In this paper, an attitude control logic based on reaction wheels that can enhance agility of spacecraft is proposed. Three methods are suggested, and all three or part of them can be integrated to the existing attitude control system. First, a feedforward/feedback controller is introduced, and its pros and cons are provided, compared to the conventional feedback controller. Second, an attitude command generation method that fully utilizes torque/momentum capacities of reaction wheels is proposed. Third, a torque (current) control mode for internal wheel control is introduced. Numerical results verify that the settling time can be significantly reduced by employing the feedforward/feedback control method, especially for large angle maneuver.

Statistical Study on Respiratory Stability Through RPM Signal Analysis according to Patient Position Under Radiation Therapy and Device (방사선 치료 환자의 자세 및 Device에 따른 RPM 신호 분석을 통한 호흡 안정성의 통계적 고찰)

  • Park, Myung-Hwan;Seo, Jeong-Min;Choi, Byeong-Gi;Shin, Eun-Hyeok;Song, Gi-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Purpose: This study statistically analyzed the difference of the stability of maintaining a respiratory period shown according to position and use of a device to search the tendency and usefulness of a device. Materials and Methods: The study obtained respiratory signals which maintained a respiratory period for 20 minutes each supine and prone position for 11 subjects. The study obtained respiratory signals in a state of using a belly board for 7 patients in a bad condition of a respiratory period in a prone position to analyze a change in respiration and the stability before and after the use of a device. Results: The supine part showed 54.5%, better than the prone part of 36.4% in a case that the stability for maintaining a respiratory period was in a good condition as a fixed respiratory period was well maintained according to the position. 6 patients (85%) showed a maintenance pattern of a respiratory period significantly different before the use and 4 patients showed a significantly good change in the stability for maintaining a respiratory period as a result that belly boards were used for 7 patients that the maintenance of a respiratory period was not in a good condition on a prone position. Conclusion: It seemed that this study could contribute to the maintenance of respiratory period and of respiratory stability as the optimal position for maintenance of respiration and the use of a device such as a belly board were decided through statistic analysis of respiratory signals and its application even if patient position and use of device were decided by the beam arrangement a treatment part of a patient, location of a target, and an expected plan.

  • PDF

Patients Setup Verification Tool for RT (PSVTS) : DRR, Simulation, Portal and Digital images (방사선치료 시 환자자세 검증을 위한 분석용 도구 개발)

  • Lee Suk;Seong Jinsil;Kwon Soo I1;Chu Sung Sil;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.100-106
    • /
    • 2003
  • Purpose : To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproduclbility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT). The utilization of this system is evaluated through phantom and patient case studies. Materials and methods : We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, porial and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT Images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. Results : The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT. The results show that the localization errors are 0.8$\pm$0.2 mm (AP) and 1.0$\pm$0.3 mm (Lateral) in the cases relating to the brain and 1.1$\pm$0.5 mm (AP) and 1.0$\pm$0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software Conclusions : A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproduclbility of the patients' setup in 3DCRT and IMRT. With adjustment of the completed GUI-based algorithm, and a good quality DRR image, our software may be used for clinical applications.