• Title/Summary/Keyword: 자동 온도 보상장치

Search Result 5, Processing Time 0.018 seconds

기술현황분석 - 지능제조설비를 위한 열변형 보상장치 및 실시간 CNC보정 기술 개발사례

  • Kim, Dong-Hun;Song, Jun-Yeop;Cha, Seok-Geun
    • 기계와재료
    • /
    • v.22 no.1
    • /
    • pp.46-53
    • /
    • 2010
  • 공작기계에서 가공정밀도를 저하시키는 가장 큰 요인은 열변형 및 채터진동이다. 본 고에서는 이 중 장시간 가공중 기계의 열변형에 따른 문제점을 자동으로 공작기계 CNC(Computerized Numerical Controller) 제어기상에서 실시간으로 보상하여 주는 장치 및 기술개발 사례에 대한 내용을 언급하고자 한다. 기계가공에서 온도신호의 실시간 데이터 취득 및 열변형에 따른 공작기계 원점(Work Offset)의 자율보정이 가공정밀도 향상 및 가동률 향상에 많은 영향을 끼친다 이에 따라 본 고에서는 온도 데이터의 취득부와 보상을 위한 보정값 추출을 위한 선형회귀법 및 신경회로망의 보정모델을 임베디드화한 디바이스와 CNC상에서 가공중 공작기계 원점 자동보정을 하는 시스템을 개발하였기에 관련내용을 소개하고자 한다.

  • PDF

A New Automatic Compensation Circuit for Low Noise Amplifiers (저잡음 증폭기를 위한 새로운 자동 보상 회로)

  • Ryu, Jee-Youl;Deboma, Gilbert D.;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.995-998
    • /
    • 2005
  • This paper proposes a new SoC (System-on-Chip)-based automatic compensation circuit (ACC) for 5GHz low noise amplifier (LNA). This circuit is extremely useful for today's RF IC (Radio Frequency Integrated Circuit) devices in a complete RF transceiver environment. The circuit contains RF BIST (Built-ln Self-Test) circuit, Capacitor Mirror Banks (CMB) and digital processing unit (DPU). The ACC automatically adjusts performance of 5GHz LNA by the processor in the SoC transceiver when the LNA goes out of the normal range of operation.

  • PDF

Volume Variation of Liquid Fuel by Seasonal, Regional Temperature Changes (계절적, 지역적 온도 변화에 따른 석유류 체적의 변화)

  • Lim, Ki Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.155-163
    • /
    • 2014
  • At gas stations, liquid fuels expand and contract in volume owing to temperature variations. In Korea, the ambient temperature varies between $-15^{\circ}C$ in winter and $35^{\circ}C$ in summer. The volume expansion coefficients of liquid fuels are about $0.1%/^{\circ}C$. To investigate this issue, we measured daily changes in fuel temperature and the delivered fuel temperature at gas stations. In addition, we scrutinized the daily, monthly, and annual changes in temperature over past 50 years in Korea. The results show that the temperature of the fuel in the storage tank was maintained at a stable value(summer or winter). Many factors, such as the surrounding conditions, fuel filling frequency, and gas station location, influence the delivered fuel temperature. The results of this study can be applied for establishing a national regulation and will contribute to fair transactions.

Development of New Ocean Radiation Automatic Monitoring System (새로운 해양 방사선 자동 감시 시스템의 개발)

  • Kim, Jae-Heong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.743-746
    • /
    • 2019
  • In this paper we proposed a new ocean radiation automatic monitoring system. The proposed system has the following characteristics: First, using NaI + PVT mixed detectors, the response speed is fast and precision analysis is possible. Second, the application of temperature compensation algorithm to scintillator-type sensors does not require additional cooling devices and enables stable operation in the changing ocean environment. Third, since cooling system is not needed, electricity consumption is low, and electricity can be supplied reliably by utilizing solar energy, which can be installed at the observation deck of ocean environment. Fourth, using GPS and wireless communications, accurate location information and real-time data transmission function for measurement areas enables immediate warning response in the event of nuclear accidents such as those involving neighboring countries. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of $5{\mu}Sv/h$ to 15mSv/h, which is the highest level in the world, and the accuracy was determined to be ${\pm}8.1%$, making normal operation below the international standard ${\pm}15%$. The internal environmental grade (waterproof) was achieved, and the rate of variation was measured within 5% at operating temperature of $-20^{\circ}C$ to $50^{\circ}C$ and stability was verified. Since the measured value change rate was measured within 10% after the vibration test, it was confirmed that there will be no change in the measured value due to vibration in the ocean environment caused by waves.

Dynamic Temperature Compensation System Development for the Accelerometer with Modified Spline Interpolation (Curve Fitting) (변형 스플라인 보간법(곡선맞춤)을 통한 가속도 센서의 동적 온도 보상 시스템 개발)

  • Lee, Hoochang;Go, Jaedoo;Yoo, Kwangho;Kim, Wanil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.114-122
    • /
    • 2014
  • Sensor fusion is the one of the main research topics. It offers the highly reliable estimation of vehicle movement by processing and mixing several sensor outputs. But unfortunately, every sensor has drift which degrades the performance of sensor. It means a single degraded sensor output may affect whole sensor fusion system. Drift in most research is ideally assumed to be zero because it's usually a nonlinear model and has sample variation. Plus, it's very difficult for the acceleration to separate drift from the output signal since it contains many contributors such as vehicle acceleration, slope angle, pitch angle, surface condition and so on. In this paper, modified spline interpolation is introduced as a dynamic temperature compensation method covering sample variation. Using the last known output and the first initial output is suggested to build and update compensation factor. When the system has more compensation data, the system will have better performance of compensated output because of the regression compensation model. The performance of the dynamic temperature compensation system is evaluated by measuring offset drift between with and without the compensation.