• Title/Summary/Keyword: 자동 결함 검출

Search Result 506, Processing Time 0.028 seconds

Automatic Defect Detection and Classification Using PCA and QDA in Aircraft Composite Materials (주성분 분석과 이차 판별 분석 기법을 이용한 항공기 복합재료에서의 자동 결함 검출 및 분류)

  • Kim, Young-Bum;Shin, Duk-Ha;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.304-311
    • /
    • 2014
  • In this paper, we propose a ultra sound inspection technique for automatic defect detection and classification in aircraft composite materials. Using local maximum values of ultra sound wave, we choose peak values for defect detection. Distance data among peak values are used to construct histogram and to determine surface and back-wall echo from the floor of composite materials. C-scan image is then composed through this method. A threshold value is determined by average and variance of the peak values, and defects are detected by the values. PCA(principal component analysis) and QDA(quadratic discriminant analysis) are carried out to classify the types of defects. In PCA, 512 dimensional data are converted into 30 PCs(Principal Components), which is 99% of total variances. Computational cost and misclassification rate are reduced by limiting the number of PCs. A decision boundary equation is obtained by QDA, and defects are classified by the equation. Experimental result shows that our proposed method is able to detect and classify the defects automatically.

Automatic Crack Detection on Pressed Panels Using Camera Image Processing with Local Amplitude Mapping (카메라 이미지 처리를 통한 프레스 패널의 크랙결함 검출)

  • Lee, Chang Won;Jung, Hwee Kwon;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.451-459
    • /
    • 2016
  • Crack detection on panels during manufacturing process is an important step for ensuring the product quality. The accuracy and efficiency of traditional crack detection methods, which are performed by eye inspection, are dependent on human inspectors. Therefore, implementation of an on-line and precise crack detection is required during the panel pressing process. In this paper, a regular CCTV camera system is utilized to obtain images of panel products and an image process based crack detection technique is developed. This technique uses a comparison between the base image and a test image using an amplitude mapping of the local image. Experiments are performed in the laboratory and in the actual manufacturing lines to evaluate the performance of the developed technique. Experimental results indicate that the proposed technique could be used to effectively detect a crack on panels with high speed.

Fast block error detection method in video using a corner information and Adaboost recognition technology (코너 정보와 Adaboost 인식 기술을 이용한 비디오 내의 블록 오류 고속 검출 방법)

  • Ha, Myunghwan;Lee, Moonsik;Park, Sungchoon;Ahn, Kiok;Kim, Min-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.58-61
    • /
    • 2011
  • 방송 콘텐츠 제작에는 카메라, VCR, NLE, 인코더 등의 장비가 사용되고 있으며, VCR 헤더 불량, 테이프 노후화/보관불량, NLE 편집 오류, 인코더 장비 불량 등의 다양한 이유로 콘텐츠에 예기치 않은 비디오 및 오디오 오류가 발생할 수 있다. 이러한 문제점을 해결하기 위하여 콘텐츠에 포함된 다양한 비디오 및 오디오 오류를 자동으로 검사할 수 있는 자동 검사 시스템이 요구된다. 본 논문에서는 이러한 다양한 오류를 자동으로 검사할 수 있는 방법 중 특히 비디오 내에 종종 포함되는 블록 오류를 대상으로 하는 고속 오류 검출 방법을 설명한다. 제안한 방법은 비디오 내의 매 프레임의 코너 수를 계산하고, 시간 증가에 따른 코너 수의 변화량을 검사하여 블록 오류가 포함될 것으로 예상되는 후보 프레임을 찾는 1단계 과정과, 후보 프레임을 대상으로 Adaboost 인식 기술을 사용하여 학습한 분류기를 통해 최종 블록 오류가 포함된 프레임을 검출하는 2단계 과정으로 구성된다. 시스템 구현 실험 결과, 비디오 내에 포함된 블록 오류를 프레임 단위로 정확하게 고속 검출 하는 것이 가능함을 확인하였다. SD급의 경우 실시간 대비 2.3배속 가량의 고속 검사가 가능하고 HD의 경우에도 0.8배속 수준의 고속 검사가 가능하였다.

  • PDF

Real-Time Multi-Objects Detection and Interest Pedestrian Tracking in Auto-Controlled Camera Environment (제어 가능한 카메라 환경에서 실시간 다수 물체 검출 및 관심 보행자 추적)

  • Lee, Byung-Sun;Rhee, Eun-Joo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2007.05a
    • /
    • pp.38-46
    • /
    • 2007
  • 본 논문에서는 실시간으로 획득된 영상을 분석하여 움직이는 다수 물체를 검출하고, 카메라를 자동 제어하여 관심 보행자만을 추적하는 시스템을 제안한다. 다수 물체 영역 검출은 차영상과 이전변환 밀도값을 이용한다. 검출된 다수 물체 영역에서 사람의 구조적 정보와 형태 정보를 이용하여 나무들의 흔들림으로 인한 영역이나 차량의 움직임 영역은 제거되고, 관심 보행자 영역만을 검출하였다. 관심 보행자 추적은 무게중심 차를 이용한 움직임 정보와 k-means 알고리즘으로 구한 세 점의 평균 색상 정보를 이용한다. 원거리 관심 보행자는 인식률을 높이기 위해 줌을 실행하여 확대하고, 관심 보행자의 화면상 위치에 따라 카메라 방향을 자동으로 조정하여 관심 보행자반을 연속적으로 추적한다. 실험 결과, 제안한 시스템은 실시간으로 움직이는 다수 물체를 검출하고, 사람의 구조적 특정과 형태 정보로 관심 보행자만을 검출할 수 있었고, 움직임 정보와 색상정보로 관심 보행자를 연속적으로 추적할 수 있었다.

  • PDF

Automatic TFT-LCD Mura Defect Detection using Gabor Wavelet Transform and DCT (가버 웨이블렛 변환 및 DCT를 이용한 자동 TFT-LCD 패널 얼룩 검출)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.525-534
    • /
    • 2013
  • Recently, mura defect inspection techniques are receiving attention in LCD production procedure since demands of TFT-LCD are growing. In this paper, we propose an automatic mura defect inspection method using gabor wavelet transform and DCT. First, we generate a reference panel image using DCT based method. For original panel image and generated reference panel image, we apply a gabor wavelet transform to eliminate texture information in images. Then, we extract mura defect regions from the difference image between gabor wavelet transform image of original panel and generated reference panel image. Finally, all mura defect regions are quantified to detect accurate mura defects. Experimental results show that our method is more accurate and efficient than previous methods.

Design and Implementation of a ML-based Detection System for Malicious Script Hidden Corrupted Digital Files (머신러닝 기반 손상된 디지털 파일 내부 은닉 악성 스크립트 판별 시스템 설계 및 구현)

  • Hyung-Woo Lee;Sangwon Na
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.1-9
    • /
    • 2023
  • Malware files containing concealed malicious scripts have recently been identified within MS Office documents frequently. In response, this paper describes the design and implementation of a system that automatically detects malicious digital files using machine learning techniques. The system is proficient in identifying malicious scripts within MS Office files that exploit the OLE VBA macro functionality, detecting malicious scripts embedded within the CDH/LFH/ECDR internal field values through OOXML structure analysis, and recognizing abnormal CDH/LFH information introduced within the OOXML structure, which is not conventionally referenced. Furthermore, this paper presents a mechanism for utilizing the VirusTotal malicious script detection feature to autonomously determine instances of malicious tampering within MS Office files. This leads to the design and implementation of a machine learning-based integrated software. Experimental results confirm the software's capacity to autonomously assess MS Office file's integrity and provide enhanced detection performance for arbitrary MS Office files when employing the optimal machine learning model.

A Study on Lambertian Color Segmentation and Canny Edge Detection Algorithms for Automatic Display Detection in CamCom (저속 카메라 통신용 자동 디스플레이 검출을 위한 Lambertian 색상 분할 및 Canny Edge Detection 알고리즘 연구)

  • Han, Jungdo;Said, Ngumanov;Vadim, Li;Cha, Jaesang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.615-622
    • /
    • 2018
  • Recent advancements in camera communication (CamCom) technology using visible light exploited to use display as an luminance source to modulate the data for visible light data communication. The existing display-CamCom techniques uses the selected region of interest based camera capturing approach to detect and decode the 2D color coded data on display screen. This is not effective way to do communicate when the user on mobility. This paper propose the automatic display detection using Lambertian color segmentation combined with canny edge detection algorithms for CamCom in order to avoid manual region of interest selection to establish communication link between display and camera. The automatic display detection methods fails using conventional edge detection algorithms when content changes dynamically in displays. In order to solve this problem lambertian color segmentation combined with canny edge detection algorithms are proposed to detect display automatically. This research analysed different algorithms on display edge recognition and measured the performance on rendering dynamically changing content with color code on display. The display detection rate is achieved around 96% using this proposed solutions.

Systematic and Comprehensive Comparisons of the MOIS Security Vulnerability Inspection Criteria and Open-Source Security Bug Detectors for Java Web Applications (행정안전부 소프트웨어 보안 취약점 진단기준과 Java 웹 어플리케이션 대상 오픈소스 보안 결함 검출기 검출대상의 총체적 비교)

  • Lee, Jaehun;Choe, Hansol;Hong, Shin
    • Journal of Software Engineering Society
    • /
    • v.28 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • To enhance effective and efficient applications of automated security vulnerability checkers in highly competitive and fast-evolving IT industry, this paper studies a comprehensive set of security bug checkers in open-source static analysis frameworks and how they can be utilized for source code inspections according to the security vulnerability inspection guidelines by MOIS. This paper clarifies the relationship be tween all 42 inspection criteria in the MOIS guideline and total 323 security bug checkers in 4 popular open-source static analysis frameworks for Java web applications. Based on the result, this paper also discuss the current challenges and issues in the MOIS guideline, the comparison among the four security bug checker frameworks, and also the ideas to improve the security inspection methodologies using the MOIS guideline and open-source static security bug checkers.

The Research of Shape Recognition Algorithm for Image Processing of Cucumber Harvest Robot (오이수확로봇의 영상처리를 위한 형상인식 알고리즘에 관한 연구)

  • Min, Byeong-Ro;Lim, Ki-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • Pattern recognition of a cucumber were conducted to detect directly the binary images by using thresholding method, which have the threshold level at the optimum intensity value. By restricting conditions of learning pattern, output patterns could be extracted from the same and similar input patterns by the algorithm. The algorithm of pattern recognition was developed to determine the position of the cucumber from a real image within working condition. The algorithm, designed and developed for this project, learned two, three or four learning pattern, and each learning pattern applied it to twenty sample patterns. The restored success rate of output pattern to sample pattern form two, three or four learning pattern was 65.0%, 45.0%, 12.5% respectively. The more number of learning pattern had, the more number of different out pattern detected when it was conversed. Detection of feature pattern of cucumber was processed by using auto scanning with real image of 30 by 30 pixel. The computing times required to execute the processing time of cucumber recognition took 0.5 to 1 second. Also, five real images tested, false pattern to the learning pattern is found that it has an elimination rate which is range from 96 to 98%. Some output patterns was recognized as a cucumber by the algorithm with the conditions. the rate of false recognition was range from 0.1 to 4.2%.

인공신경망을 응용한 접속케이블 자동검사시스템

  • 이문규;윤찬균
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.273-284
    • /
    • 1995
  • 카메라를 통하여 얻은 영상자료로부터 대상물의 특징을 추출하여 검사에 응용하는 자동검사기법의 수요가 늘고 있다. 본 연구에서는 그러한 자동검사의 실예로서 접속 케이블(wire hardness)의 색깔인식을 이용한 양/불량을 구별하는 시스템을 구축하였다. 색깔인식을 위한 도구로서 입력층, 1개의 은닉층 및 출력층으로 이루어진 2층 구조의 역전파신경망(back-propagation neural network)을 사용하였다. 입력자료로는, 화상에서 케이블의 위치를 파악하고 그 케이블에 속한 화소로부터 필요한 정보(Y, U, V)를 추출한 후, 보다 변별력이 좋은 (L, a, b) 좌표계로 변환하여 사용하였다. 본 검사시스템은 인식속도를 향상시키기 위하여 영상정보를 프레임 버퍼(frame buffer)에서 직접 사용하고 자료의 검사과정을 극소화 하였기 때문에 불량품의 실시간 검출이 가능하다. 불량품 검출의 성능을 평가하기 위하여 실제 표본을 가지고 시스템의 성능을 평가한 결과, 양/불량의 인식율이 100%를 나타내어 약간의 성능보완이 이루어지면 현장에서 바로 활용할 수 있을 것으로 판단된다.

  • PDF