• Title/Summary/Keyword: 자동화된 기계 학습

Search Result 105, Processing Time 0.025 seconds

A study on data collection environment and analysis using virtual server hosting of Azure cloud platform (Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구)

  • Lee, Jaekyu;Cho, Inpyo;Lee, Sangyub
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

Game Test Automation with Reinforce Learning (강화학습을 이용한 게임 테스트 자동화)

  • Lee, Suk-ki;Kwak, Ho-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.25-28
    • /
    • 2018
  • 본 논문에서는 강화학습을 통한 게임 테스트 자동화를 제안한다. 게임 테스트의 일부가 게임을 플레이라는 것과 강화학습에 기반을 둔 인공 신경망 모델들이 게임플레이에 많은 성과를 거둔 것에 착안하여 테스트 케이스 자동 생셩 및 기계학습을 통한 테스트 자동화를 연구하였다. 테스트 관리자를 두어 게임 요소에 필수적인 테스트 케이스를 데이터 조합으로 생성하고, 테스트 케이스를 수행할 인공지능을 기계학습으로 작성하여 자동화 유지비용을 절감한다. 이 모델을 소형 게임에 시험적으로 적용하였고, 정상 작동을 확인하였다.

  • PDF

Machine Learning-based Concrete Crack Detection Framework for Facility Maintenance (시설물의 유지관리를 위한 기계학습 기반 콘크리트 균열 감지 프레임워크)

  • Ji, Bongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.5-12
    • /
    • 2021
  • The deterioration of facilities is an unavoidable phenomenon. For the management of aging facilities, cracks can be detected and tracked, and the condition of the facilities can be indirectly inferred. Therefore, crack detection plays a crucial role in the management of aged facilities. Conventional maintenances are conducted using the crack detection results. For example, maintenance activities to prevent further deterioration can be performed. However, currently, most crack detection relies only on human judgment, so if the area of the facility is large, cost and time are excessively used, and different judgment results may occur depending on the expert's competence, it causes reliability problems. This paper proposes a concrete crack detection framework based on machine learning to overcome these limitations. Fully automated concrete crack detection was possible through the proposed framework, which showed a high accuracy of 96%. It is expected that effective and efficient management will be possible through the proposed framework in this paper.

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.53-63
    • /
    • 2023
  • This study developed a cognitive impairment predictive model as one of the screening tests for preventing dementia in the elderly by using Automated Machine Learning(AutoML). We used 'Wearable lifelog data for high-risk dementia patients' of National Information Society Agency, then conducted using PyCaret 3.0.0 in the Google Colaboratory environment. This study analysis steps are as follows; first, selecting five models demonstrating excellent classification performance for the model development and lifelog data analysis. Next, using ensemble learning to integrate these models and assess their performance. It was found that Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, and Random Forest Classifier model showed high predictive performance in that order. This study findings, furthermore, emphasized on the the crucial importance of 'Average respiration per minute during sleep' and 'Average heart rate per minute during sleep' as the most critical feature variables for accurate predictions. Finally, these study results suggest that consideration of the possibility of using machine learning and lifelog as a means to more effectively manage and prevent cognitive impairment in the elderly.

다단계 뉴럴네트워크(Neural Network)에 의한 온-라인 기계상태감시

  • 한정희;왕지남;허정준
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.504-509
    • /
    • 1995
  • 컴퓨터에 의한 생산시스템의 통합체계화와 온-라인화에 따라 자동화된 설비진단 방법이 요구되어지고 있다. 이에 따라 기계설비에 각종 센서를 부착하여 실시간으로 수집된 출력신호를 이용하여 기계설비를 온-라인으로 감시하는 여러가지 기법들이 제시되고 있다. 본 연구에서는 진동센서로부터의 신호를 radial 함수에 근거한 다단계 뉴럴 네트워크(Neural Network)로 모형화하여 기계설비 상태를 감시하는 방법을 제시한다. 또한 다단계 모델링 분석을 통하여 신호를 예측하고 설비고장 원인을 분류하며, 다른 모형과의 비교를 통하여 효율성 평가와 최적 단계수를 결정하였다. 온라인 학습 알고리즘은 recursive least squares와 clustering 방법을 이용한다.

  • PDF

A Specification-Based Methodology for Data Collection in Artificial Intelligence System (명세 기반 인공지능 학습 데이터 수집 방법)

  • Kim, Donggi;Choi, Byunggi;Lee, Jaeho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.479-488
    • /
    • 2022
  • In recent years, with the rapid development of machine learning technology, research utilizing machine learning has been actively conducted in fields such as cognition, reasoning and judgment, and action among various technologies constituting intelligent systems. In order to utilize this machine learning, it is indispensable to collect data for learning. However, the types of data generated vary according to the environment in which the data is generated, and the types and forms of data required are different depending on the learning model to be used for machine learning. Due to this, there is a problem that the existing data collection method cannot be reused in a new environment, and a specialized data collection module must be developed each time. In this paper, we propose a specification-based methology for data collection in artificial intelligence system to solve the above problems, ensure the reusability of the data collection method according to the data collection environment, and automate the implementation of the data collection function.

Word-level Korean-English Quality Estimation (단어 수준 한국어-영어 기계번역 품질 예측)

  • Eo, Sugyeong;Park, Chanjun;Seo, Jaehyung;Moon, Hyeonseok;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.9-15
    • /
    • 2021
  • 기계번역 품질 예측 (Quality Estimation, QE)은 정답 문장에 대한 참조없이 소스 문장과 기계번역 결과를 통해 기계번역 결과에 대한 품질을 수준별 주석으로 나타내주는 태스크이며, 다양한 활용도가 있다는 점에서 꾸준히 연구가 수행되고 있다. 그러나 QE 모델 학습을 위한 데이터 구성 시 기계번역 결과에 대해 번역 전문가가 교정한 문장이 필요한데, 이를 제작하는 과정에서 상당한 인건비와 시간 비용이 발생하는 한계가 있다. 본 논문에서는 번역 전문가 없이 병렬 또는 단일 말뭉치와 기계번역기만을 활용하여 자동화된 방식으로 한국어-영어 합성 QE 데이터를 구축하며, 최초로 단어 수준의 한국어-영어 기계번역 결과 품질 예측 모델을 제작하였다. QE 모델 제작 시에는 Cross-lingual language model (XLM), XLM-RoBERTa (XLM-R), multilingual BART (mBART)와 같은 다언어모델들을 활용하여 비교 실험을 수행했다. 또한 기계번역 결과에 대한 품질 예측의 객관성을 검증하고자 구글, 아마존, 마이크로소프트, 시스트란의 번역기를 활용하여 모델 평가를 진행했다. 실험 결과 XLM-R을 활용하여 미세조정학습한 QE 모델이 가장 좋은 성능을 보였으며, 품질 예측의 객관성을 확보함으로써 QE의 다양한 장점들을 한국어-영어 기계번역에서도 활용할 수 있도록 했다.

  • PDF

An Effective Smart Greenhouse Data Preprocessing System for Autonomous Machine Learning (자율 기계 학습을 위한 효과적인 스마트 온실 데이터 전처리 시스템)

  • Jongtae Lim;RETITI DIOP EMANE Christopher;Yuna Kim;Jeonghyun Baek;Jaesoo Yoo
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2023
  • Recently, research on a smart farm that creates new values by combining information and communication technology(ICT) with agriculture has been actively done. In order for domestic smart farm technology to have productivity at the same level of advanced agricultural countries, automated decision-making using machine learning is necessary. However, current smart greenhouse data collection technologies in our country are not enough to perform big data analysis or machine learning. In this paper, we design and implement a smart greenhouse data preprocessing system for autonomous machine learning. The proposed system applies target data to various preprocessing techniques. And the proposed system evaluate the performance of each preprocessing technique and store optimal preprocessing technique for each data. Stored optimal preprocessing techniques are used to perform preprocessing on newly collected data

GP Modeling of Nonlinear Electricity Demand Pattern based on Machine Learning (기계학습 기반 비선형 전력수요 패턴 GP 모델링)

  • Kim, Yong-Gil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • The emergence of the automated smart grid has become an essential device for responding to these problems and is bringing progress toward a smart grid-based society. Smart grid is a new paradigm that enables two-way communication between electricity suppliers and consumers. Smart grids have emerged due to engineers' initiatives to make the power grid more stable, reliable, efficient and safe. Smart grids create opportunities for electricity consumers to play a greater role in electricity use and motivate them to use electricity wisely and efficiently. Therefore, this study focuses on power demand management through machine learning. In relation to demand forecasting using machine learning, various machine learning models are currently introduced and applied, and a systematic approach is required. In particular, the GP learning model has advantages over other learning models in terms of general consumption prediction and data visualization, but is strongly influenced by data independence when it comes to prediction of smart meter data.