최근 도시에서 생산되는 수많은 디지털 데이터를 저장, 운용, 분석하기 위한 3차원 도시 공간정보 인프라에 대한 수요가 증가하고 있다. CityGML은 OGC (Open Geospatial Consortium)의 3차원 공간정보 데이터 표준으로서 도시 데이터의 교환 및 속성 표현에 강점을 가지고 있으며, 최근 싱가폴, 뉴욕 등 몇몇 도시를 중심으로 CityGML 형식의 3차원 도시공간 데이터를 구축한 사례가 등장하였다. 그러나 현재 CityGML 데이터의 제작 및 편집을 위한 생태계는 sketchup이나 3d max 등 3차원 데이터 구축에 활용되고 있는 상용프로그램과 비교할 때 완성도가 부족하여 대규모로 CityGML 데이터를 구축하는 데 한계가 있다. 따라서 본 연구에서는 항공 LiDAR (Light Detection and Ranging) 나 RGB (Red Green Blue) 카메라를 이용하여 신속하고 자동으로 제작되는 3D mesh 데이터 및 2차원 폴리곤을 활용하여 3차원 공간정보 표준인 CityGML 데이터를 구축하는 방법을 제시하였다. 데이터 구축과정에서는 각 객체가 다양한 CityGML LoD (Level of Detail)로 표현될 수 있도록 원본 3D mesh 데이터를 변형하였고 공간정보로서 활용도를 높이기 위해 2차원 공간정보 데이터로부터 추출한 속성정보를 보조적으로 활용하였다. 본 연구에서 제작한 도시 3D 객체는 CityGML 건물, 교량, 도시시설물, 도로, 터널이며 객체별 데이터 변환, 속성 구축 방법을 제시하고 가시화 및 유효성 검정을 진행하였다.
미래의 주가를 예측하기 위한 시도는 과거부터 꾸준히 연구되어왔다. 그러나 일반적인 시계열 데이터와 달리 금융 시계열 비정상성(non-stationarity)과 장기 의존성(long-term dependency), 비선형성(non-linearity) 등 예측을 하는 것에 있어서 여러 가지 방해 요인이 존재한다. 또한, 광범위한 데이터의 변수는 기존에 사람이 직접 선택하는 것에 한계가 있으며 모델이 변수를 자동으로 잘 추출할 수 있도록 하여야 한다. 본 논문에서는 비정상성 데이터를 정규화할 수 있는 슬라이딩 타임스텝 정규화(sliding time step normalization) 방법과 LSTM 형태의 오토인코더(AutoEncoder)를 사용하여 모든 변수로부터 압축된 변수로 미래 주가를 예측하는 방법, 기간을 나누어 전이 학습을 하는 이동 전이 학습(moving transfer learning)을 제안한다. 또한, 실험을 통하여 100개의 주요 금융 변수들만을 사용하는 것보다 뉴럴 네트워크를 통해서 가능한 많은 변수를 사용하였을 때 성능이 우수함을 보이며, 슬라이딩 타임스텝 정규화 방법을 사용하여 모든 구간에서 데이터의 비정상성에 대해 정규화를 수행함으로써 성능 향상에 효과적임을 보인다. 이동 전이 학습 방법은 스텝 별 테스트 구간에서 모델의 성능을 평가하고 전이학습을 함으로써 긴 테스트 구간에서 성능 향상에 효과적임을 보인다.
본 논문에서는 비탈면의 안전점검에서 지반정수를 간편하게 측정할 수 있는 휴대형 시추기에 적용이 가능한 콘 형태의 복합센서를 개발하였으며, 지반정보를 예측할 수 있는 휴대용 지반정보 계측기 (Portable Tester)를 개발하였다. 휴대가 간편한 비탈면 안전점검용 센서개발을 위해서, 비탈면취약도 평가에 필요한 지층 및 지반정보를 측정할 수 있는 센서들을 포함하며, 비탈면안전성 평가에 필요한 조사데이터(토층심도, 강도정수 등)를 자동 추출하고, 상부 자연사면 토사붕괴 징후파악을 위해 깊이별 함수비 측정도 가능하도록 복합센서로 설계하였다. 지반정보 복합센서의 선단을 구성하는 소형 전자식 콘 프로브는 CPT 및 DCPT를 수행하기 위해 개발하였으며, 직경 30mm 콘과 길이 250mm Friction Sleeve를 기본 스펙으로 콘관입력과 마찰력을 손실 없이 로드셀로 전달하기 위한 로드와 어댑터, 로드셀 모듈로 설계하였다. 복합센서의 로드셀 부분를 응용하여, 토양경도계 형태로 휴대가 간편하면서도 CPT처럼 표토층의 콘관입력을 측정하면서 동시에 슬리브 마찰력 측정을 가능하게 함으로써 좀 더 구체적인 지반정보를 예측할 수 있는 휴대용 지반정보 계측기 (Portable Tester)도 개발하였다. 개발한 센서 시스템은 실내 시험을 통해서 CPT 시험과 휴대용 지반정보 계측기 시험의 상관성을 확인하였으며, 현장시험을 통해서 CPT 콘저항값과 표준관입시험의 N치를 추정하여 현장 적용성을 검증하였다.
저가형 UAV기반 사진측량의 정밀도와 정확도를 평가하기 위한 실험을 수행하였다. 높은 정확도의 지상기준점과 검사점의 3차원 좌표를 추정하고자 GNSS정지관측과 기선해석, 망조정을 수행하였고, 신뢰수준 95%에 대하여 정확도가 1cm 이내인 좌표를 확보하였다. 실험 대상지에 대한 항공 사진은 DJI Phantom 4와 이에 탑재된 FC330 카메라로 7회 반복 촬영하였고, 이를 두 가지 소프트웨어로 처리하였다. 10개 검사점에 대한 소프트웨어 자동 추출좌표와 GNSS 추정해를 비교하여 표준편차 및 RMSE를 분석하였다. 두 소프트웨어 처리 결과, 95% 신뢰수준에 대해 표준편차는 남북, 동서, 높이 방향 각각 약 1cm, 2cm, 4cm 이내, RMSE는 수평과 높이 각각 9cm, 8cm 이내였으며, 표준편차가 RMSE에 비해 현저히 작았다. 두 소프트웨어 처리 결과의 통계적 차이를 확인하고자 F-ratio 검정을 수행하였다. 정밀도에 대해서는 모든 좌표 성분에 대해 한쪽꼬리 검정의 귀무가설이 기각되었고, RMSE에 대해서는 수평에 대한 것만 기각되었다. 이에 따라, 동일한 사진 자료를 처리하더라도 소프트웨어에 따라 그 결과에 통계적 차이가 있을 수 있음에 유의할 필요가 있다.
다리 움직임이 몸통 주위 근육에 효과적인 변화를 줄 수 있다는 근거를 바탕으로 다리 움직임을 동반한 복부 드로우-인 방법이 뇌졸중 환자들의 배가로근 두께와 몸통 조절 능력에 변화를 알아보고, 효율적인 복부 드로우-인 기법에 있어서 임상적 기초 자료를 제공하기 위해 시행하였다. 본 연구는 뇌졸중 환자 18명을 표본 추출하여, 기존의 복부 드로우-인 기법을 적용한 집단을 실험군I(n=9)로, 다리 움직임을 동반한 복부 드로우-인 기법을 적용한 집단은 실험군II(n=9)로 무작위 배치한 후 사전 검사로 초음파를 활용하여 마비측 배가로근의 두께를 측정하였고, 몸통 조절 능력은 몸통 손상 정도 평가지를 이용하여 측정하였다. 총 4주 간, 주 4일, 1일 1회, 30분씩 중재 프로그램을 시행한 후 사후검사를 사전검사와 동일하게 재 측정하여 분석하였다. 그 결과 두 집단 내 배가로근 두께 변화 비교에서는 두 집단 모두 복부 드로우-인 동작 시 유의한 차이가 있었으며(p<0.01), 몸통 조절 능력에서도 두 집단 모두 유의한 차이가 있었다(p<0.001). 그러나 두 집단 간 배가로근 두께와 몸통 조절 능력 변화 비교에서는 몸통 조절 능력에서만 유의한 차이가 있었다(p<0.05). 따라서 집단 간 배가로근의 두께는 차이가 없었지만, 다리의 움직임을 통해 자동 반사적인 골반 움직임이 나타나 복부 주위의 근육들에게도 효율적인 수축 반응이 나타나 더 효과적으로 몸통 조절 능력을 향상시킬 수 있는 중재방법임을 알 수 있었다.
최근 가짜뉴스는 뉴스 콘텐츠 형식을 가장하고 중요한 사건이 발생할 때마다 등장하여 사회적 혼란을 초래한다. 이에 가짜뉴스를 탐지하기 위한 연구로 인공지능 기술이 사용된다. 자연어 처리를 통해 가짜뉴스를 자동으로 인지 및 차단하거나, 네트워크 인과 추론과 결합함으로써 허위 정보를 확산시키는 소셜미디어 인플루언스 계정을 감지하는 등의 가짜뉴스 탐지 접근법이 딥러닝을 통해 구현될 수 있었다. 그러나 가짜뉴스 탐지는 여러 자연어 처리 분야 중에서도 해결이 어려운 문제로 분류된다. 가짜뉴스가 가지는 형식 및 표현의 다양성으로 특성 추출의 난도가 높고, 뉴스가 속한 범주에 따라 하나의 특성이 서로 다른 의미를 가질 수도 있는 등 다양한 한계점이 존재한다. 본 논문에서는 가짜뉴스를 탐지하기 위한 추가적인 식별 기준으로 감성 변화 패턴을 제시한다. 합성곱 신경망을 가짜뉴스 데이터 세트에 적용하여 콘텐츠 특성에 기반한 분석을 수행하고, 감성 변화 패턴을 추가로 분석함으로써 성능이 개선된 모델을 제안한다. 뉴스를 구성하는 문장에 대하여 감성 극성을 산출하고 장단기 메모리를 적용함으로써 문장 순서에 의존적인 결괏값을 얻을 수 있다. 이를 감성 변화의 패턴으로 정의하고 뉴스의 콘텐츠 특성과 결합하여 가짜뉴스 탐지를 위한 제안 모델의 독립변수로 활용한다. 제안 모델과 비교 모델을 딥러닝으로 학습시키고 가짜뉴스 데이터 세트를 이용한 실험을 진행하여 감성 변화 패턴이 가짜뉴스 탐지 성능을 개선할 수 있음을 확인한다.
본 연구에서는 객체 인식 모델을 활용하여 전동 이동 보조기를 이용하는 교통약자를 위한 자동 정보 수집 체계 및 지리정보 구축 알고리즘을 구현하고자 한다. 장애인의 이동 중 만날 수 있는 객체를 인식하면서 좌표정보와 함께 획득하고 사진정보를 저장하여 기존의 장애인용 지리정보 보다 개선된 이동 경로 선택용 지도정보를 제공하고자 한다. 데이터 획득을 위한 수집 프로세스는 HW 계층을 포함하여 총 4가지 계층으로 구성되어 있으며, 영상 정보와 위치정보를 수집하여 서버로 송신하고 이를 인식하고 분류하는 과정을 통해 지리정보 생성에 필요한 데이터를 추출한다. 생성된 알고리즘은 실제 배리어프리존 일대에서 주행 실험을 실시하고 이 과정에서 실제 데이터의 수집과 그에 따른 지리정보 생성 알고리즘의 실행을 통해 실제 유의한 수준의 지리정보가 얼마나 효율적으로 생성되는지를 확인한다. 수집된 지리정보 처리 성능은 세 번의 실험에서 1회차 70.92 EA/s, 2회차 70.69 EA/s 3회차 70.98 EA/s로 평균 70.86 EA/s로 확인되었으며 실제 지리정보에 반영되기까지 약 4초가 소요됨을 확인할 수 있었다. 이러한 실험 결과로부터 전동 이동 보조기를 이용하는 보행 약자가 현재보다 빠르게 제공되는 새로운 지리정보를 이용해 안전한 주행이 가능한 것으로 확인되었다.
도심지 도로에서의 지하공동 붕괴로 인한 지반침하 문제는 인명 및 재산 피해로 이어질 수 있기 때문에 이를 예방하기 위해서는 사전에 지하공동을 탐지하고 복구하는 과정이 필요하다. 지하공동 탐지는 주로 지표투과레이더(ground penetrating radar, GPR) 탐사를 통해 이루어지는데, 방대한 탐사 자료로 인해 해석에 많은 시간이 소모되고 전문가의 숙련도와 주관에 따라 해석 결과가 달라질 수 있다. 이러한 문제를 해결하기 위해 GPR 자료 해석 자동화 및 정량화 기법들이 연구되어 왔으며, 최근에는 딥러닝 기반의 해석 기법들이 많이 활용되고 있다. 이 연구에서는 딥러닝 기반의 GPR 자료해석 기법 중 쌍곡선(hyperbola) 신호를 탐지하는 과정에 대해 기존 연구에서 개발된 기법을 단계별로 실증 예제를 통해 설명하였다. 먼저, 쌍곡선 신호를 자동으로 탐지하기 위해서 딥러닝 기반 YOLOv3 객체탐지 기법을 적용했다. 다음으로는 column-connection clustering (C3) 알고리즘을 통해 쌍곡선 신호만을 추출하였고, 최종적으로 회귀분석을 통해 지하공동의 수평위치를 결정했다. YOLOv3 객체탐지 기법을 이용한 쌍곡선 신호 탐지 성능은 AP50 기준으로 정밀도 84%, 재현율 92%를 달성했다. 지하공동 수평위치 정확도는 4개 샘플에 대해 실제 위치와 약 0.12 ~ 0.36 m 정도의 차이를 보였다. 이를 통해 지하공동에 의해 나타나는 쌍곡선 신호에 대한 딥러닝 기반 탐지 기법의 적용성을 확인할 수 있었다.
딥러닝을 이용한 한글 생성 모델에 대한 연구가 많이 진행되었으며, 최근에는 한글 1벌을 생성하기 위하여 입력되는 글자 수를 얼마나 최소화할 수 있는지(Few-Shot Learning)에 대하여 연구되고 있다. 본 논문은 28개 글자를 사용하는 CKFont (이하 CKFont1) 모델을 분석하고 개선하여 14개 글자만을 사용하는 CKFont2 모델을 제안한다. CKFont2 모델은 28글자로 51개 한글 구성요소를 추출하여 모든 한글을 생성하는 CKFont1 모델을, 24개의 구성요소(자음 14개와 모음 10개)를 포함한 14개의 글자만을 이용하여 모든 한글을 생성하는 모델로 성능을 개선하였으며, 이는 현재 알려진 모델로서는 최소한의 글자를 사용한다. 한글의 기본 자/모음으로부터 쌍자음(5), 복자음(11)/복모음(11) 등 27개를 딥러닝으로 학습하여 생성하고, 생성된 27개 구성요소를 24개의 기본 자/모음과 합한 51개 구성요소로부터 모든 한글을 자동 생성한다. zi2zi, CKFont1, MX-Font 모델 생성 결과와 비교 분석하여 성능의 우수성을 입증하였으며, 구조가 간결하고 시간과 자원이 절약되는 효율적인 모델로 한자나 태국어, 일본어에도 확장 적용이 가능하다.
드론은 국토조사, 수송, 해양, 환경, 방재, 문화재, 건설 등 다양한 분야에서 활용되고 있다. 또한 사물인터넷(Internet of Things), 인공지능(Artificial Intelligence) 등과 관련하여 4차 산업 혁명의 핵심기술을 검증하고 적용시킬 수 있는 기술로 떠오르고 있다. 본 연구에서는 드론을 활용하여 균열을 자동으로 탐지할 수 있는 딥러닝 모델을 개발하고자 한다. 딥러닝 학습을 위한 이미지 데이터는 Mavic3 드론을 이용하여 수집하였고 촬영고도는 20m, ×7배율로 촬영하였다. 촬영 시 약 2m/s의 속도로 전진하여 영상을 찍고, 프레임을 추출하는 식으로 데이터를 수집하였다. 이런식으로 수집한 데이터를 통해 딥러닝 학습을 진행하였다. 본 연구에서는 딥러닝 학습모델로 Backbone으로는 Swin Transformer, Architecture로 UperNet을 사용하였다. 약 800장의 라벨링 된 데이터를 Augmentation기법으로 데이터 양을 증가시키고 3차에 걸쳐 학습을 진행하였다. 1차와 2차 학습 시 Cross-Entropy loss function을 사용하였고 3차 학습 시 Tversky Loss Function을 사용하였다. 학습결과, 균열 탐지와 균열율을 계산할 수 있는 모델을 개발하였다. 또한, 드론의 위치 정보를 이용해 특정 도로의 한 차선 균열율을 계산할 수 있는 모델을 개발하였다. 향후 추가적인 연구를 통하여 균열탐지모델의 고도화를 사물인터넷(IoT)과의 융합으로 이루었을 때 소파보수(Patching)나 포트홀(Pothole)의 탐지가 가능할 것으로 보인다. 또한 드론의 실시간 탐지 업무수행으로 포장 유지 보수구간에 대한 탐지를 신속하게 확보할 수 있을것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.