Browse > Article
http://dx.doi.org/10.7582/GGE.2022.25.4.189

Deep-learning-based GPR Data Interpretation Technique for Detecting Cavities in Urban Roads  

Byunghoon, Choi (Department of Energy Resources Engineering, Inha University)
Sukjoon, Pyun (Department of Energy Resources Engineering, Inha University)
Woochang, Choi (Department of Energy Resources Engineering, Inha University)
Churl-hyun, Jo (Subsurface Information Technologies, Inc.)
Jinsung, Yoon (Seoul Metropolitan Government)
Publication Information
Geophysics and Geophysical Exploration / v.25, no.4, 2022 , pp. 189-200 More about this Journal
Abstract
Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.
Keywords
ground penetrating radar (GPR); road cavity; deep learning; object detection; hyperbolic signal;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Zou, Z., Shi, Z., Guo, Y., and Ye, J., 2019, Object detection in 20 years: A survey, arXiv preprint, arXiv:1905.05055, doi: 10.48550/arXiv.1905.05055.   DOI
2 Bae, Y.-S., Kim, K.-T., and Lee, S.-Y., 2017, The Road Subsidence Status and Safety Improvement Plans, J. Korea Acad.-Ind. cooperation Soc., 18(1), 545-552 (in Korean with English abstract), doi: 10.5762/kais.2017.18.1.545.   DOI
3 Borgioli, G., Capineri, L., Falorni, P., Matucci, S., and Windsor, C. G., 2008, The detection of buried pipes from time-of-flight radar data, IEEE Trans. Geosci. Remote Sens., 46(8), 2254-2266, doi: 10.1109/TGRS.2008.917211.   DOI
4 Capineri, L., Grande, P., and Temple, J., 1998, Advanced image-processing technique for real-time interpretation of ground-penetrating radar images, Int. J. Imaging Syst. Technol., 9(1), 51-59, doi: 10.1002/(SICI)1098-1098(1998)9:1<51::AIDIMA7>3.0.CO;2-Q   DOI
5 Chen, H., and Cohn, A. G., 2010, Probabilistic robust hyperbola mixture model for interpreting ground penetrating radar data, 2010 Int. Joint Conf. Neural Networks (IJCNN), Expanded Abstracts, 1-8, doi: 10.1109/IJCNN.2010.5596298.   DOI
6 Chomdee, P., Boonpoonga, A., and Prayote, A., 2014, Fast and efficient detection of buried object for GPR image, 20th AsiaPacific Conf. Commun. (APCC2014), Expanded Abstracts, 350-355, doi: 10.1109/APCC.2014.7092835.   DOI
7 Dou, Q., Wei, L., Magee, D. R., and Cohn, A. G., 2016, Realtime hyperbola recognition and fitting in GPR data, IEEE Trans. Geosci. Remote Sens., 55(1), 51-62, doi: 10.1109/TGRS.2016.2592679.   DOI
8 Girshick, R., 2015, Fast r-cnn. Proc. IEEE Int. Conf. Comput. Vis., Expanded Abstracts, 1440-1448, doi: 10.1109/ICCV.2015.169.   DOI
9 He, K., Zhang, X., Ren, S., and Sun, J., 2016, Deep residual learning for image recognition, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Expanded Abstracts, 770-778, doi: 10.1109/CVPR.2016.90.   DOI
10 Hou, F., Lei, W., Li, S., and Xi, J., 2021, Deep learning-based subsurface target detection from GPR scans, IEEE Sens. J., 21(6), 8161-8171, doi: 10.1109/JSEN.2021.3050262.   DOI
11 Kang, M. S., Kim, N., Im, S. B., Lee, J. J., and An, Y. K., 2019, 3D GPR image-based UcNet for enhancing underground cavity detectability, Remote Sens., 11(21), 2545, doi: 10.3390/rs11212545.   DOI
12 Kim, B., Seol, S. J., and Byun, J., 2017, Application of Image Processing Techniques to GPR Data for the Reliability Improvement in Subsurface Void Analysis, Geophys. and Geophys. Explor., 20(2), 61-71 (in Korean with English abstract), doi: 10.7582/GGE.2017.20.2.061.   DOI
13 Kim, Y. T., Kim, B., Kim, J. W., Park, H. M., and Yoon, J. S., 2016, Determining the Optimal Frequency of Ground Penetrating Radar for Detecting Voids in Pavements, Int. J. Highw. Eng., 18(2), 37-42 (in Korean with English abstract), doi: 10.7855/ijhe.2016.18.2.037.   DOI
14 Lee, C. M., Yoon, J. S., Baek, J. E., and Kim, S. T., 2019, Evaluation of GPR application to survey utilities on sidewalks, Int. J. Highw. Eng., 21(1), 35-41 (in Korean with English abstract), doi: 10.7855/IJHE.2019.21.1.035.   DOI
15 Lee, K. L., and Mokji, M. M., 2014, Automatic target detection in GPR images using Histogram of Oriented Gradients (HOG), 2014 2nd Int. Conf. Electronic Design (ICED), Expanded Abstracts, 181-186, doi: 10.1109/ICED.2014.7015795.   DOI
16 Lei, W., Hou, F., Xi, J., Tan, Q., Xu, M., Jiang, X., Liu, G., and Gu, Q., 2019, Automatic hyperbola detection and fitting in GPR B-scan image, Autom. Constr., 106, 102839, doi: 10.1016/j.autcon.2019.102839.   DOI
17 Lei, W., Luo, J., Hou, F., Xu, L., Wang, R., and Jiang, X., 2020, Underground cylindrical objects detection and diameter identification in GPR B-scans via the CNN-LSTM framework, Electronics, 9(11), 1804, doi: 10.3390/electronics9111804.   DOI
18 Li, S., Gu, X., Xu, X., Xu, D., Zhang, T., Liu, Z., and Dong, Q., 2021, Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm, Constr. Build Mater., 273, 121949, doi: 10.1016/j.conbuildmat.2020.121949.   DOI
19 Li, Y., Zhao, Z., Luo, Y., and Qiu, Z., 2020, Real-time patternrecognition of GPR images with YOLO V3 implemented by Tensor Flow, Sensors, 20(22), 6476, doi: 10.3390/s20226476.   DOI
20 Liu, H., Lin, C., Cui, J., Fan, L., Xie, X., and Spencer, B. F., 2020, Detection and localization of rebar in concrete by deep learning using ground penetrating radar, Autom. Constr., 118, 103279, doi: 10.1016/j.autcon.2020.103279.   DOI
21 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., and Berg, A. C., 2016, Ssd: Single shot multibox detector, Europ. Conf. Comput. Vis., Expanded Abstracts, 21-37, doi: 10.48550/arXiv.1512.02325.   DOI
22 Liu, Z., Gu, X., Yang, H., Wang, L., Chen, Y., and Wang, D., 2022, Novel YOLOv3 Model With Structure and Hyperparameter Optimization for Detection of Pavement Concealed Cracks in GPR Images, IEEE Trans. Intell. Transp. Syst., 1-11, doi: 10.1109/TITS.2022.3174626.   DOI
23 Luo, T. X., and Lai, W. W., 2020, GPR pattern recognition of shallow subsurface air voids, Tunn. Undergr. Space Technol., 99, 103355, doi: 10.1016/j.tust.2020.103355.   DOI
24 Luo, T. X., Yuan, P., and Zhu, S., 2022, Automatic modelling of urban subsurface with ground-penetrating radar using multiagent classification method, Geo. Spat. Inf. Sci., 1-12, doi: 10.1080/10095020.2022.2040924.   DOI
25 Merkle, D., Frey, C., and Reiterer, A., 2021, Fusion of ground penetrating radar and laser scanning for infrastructure mapping, J. Geod., 15(1), 31-45, doi: 10.1515/jag-2020-0004.   DOI
26 Mertens, L., Persico, R., Matera, L., and Lambot, S., 2015, Automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium, IEEE Trans. Geosci. Remote Sens., 54(1), 580-596, doi: 10.1109/TGRS.2015.2462727.   DOI
27 Park, S., Kim, J., Jeon, K., Kim, J., and Park, S., 2021, Improvement of gpr-based rebar diameter estimation using yolo-v3, Remote Sens., 13(10), 2011, doi: 10.3390/rs13102011.   DOI
28 Ni, Z. K., Zhao, D., Ye, S., and Fang, G., 2020, City road cavity detection using YOLOv3 for ground-penetrating radar,18th Int. Conf. Ground Penetrating Radar, Expanded Abstracts, 384-387, doi: 10.1190/gpr2020-100.1.   DOI
29 Padilla, R., Netto, S. L., and Da Silva, E. A., 2020, A survey on performance metrics for object-detection algorithms, IEEE Int. Conf. on Syst., Signals and Image Process. (IWSSIP), Expanded Abstracts, 237-242, doi: 10.1109/IWSSIP48289.2020.9145130.   DOI
30 Park, J. J., and Kim, I. D., 2020, Analysis of the under Pavement Cavity Growth Rate using Multi-Channel GPR Equipment. J. Soc. Disaster Inf., 16(1), 60-69 (in Korean with English abstract), doi: 10.15683/kosdi.2020.3.31.060.   DOI
31 Pham, M. T., and Lefevre, S., 2018, Buried object detection from B-scan ground penetrating radar data using Faster-RCNN, IGARSS 2018-2018 IEEE Int. Geosci. and Remote Sens. Symposium, Expanded Abstracts, 6804-6807, doi: 10.1109/IGARSS.2018.8517683.   DOI
32 Qiu, Z., Zhao, Z., Chen, S., Zeng, J., Huang, Y., and Xiang, B., 2022, Application of an Improved YOLOv5 Algorithm in Real-Time Detection of Foreign Objects by Ground Penetrating Radar, Remote Sens., 14(8), 1895, doi: 10.3390/rs14081895.   DOI
33 Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., 2016, You only look once: Unified, real-time object detection, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Expanded Abstracts, 779-788, doi: 10.48550/arXiv.1506.02640.   DOI
34 Redmon, J., and Farhadi, A., 2017, YOLO9000: better, faster, stronger, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Expanded Abstracts, 7263-7271, doi: 10.48550/arXiv.1612.08242.   DOI
35 Thitimakorn, T., Kampananon, N., Jongjaiwanichkit, N., and Kupongsak, S., 2016, Subsurface void detection under the road surface using ground penetrating radar (GPR), a case study in the Bangkok metropolitan area, Thailand, Int. J. Geotech. Eng., 7(1), 1-9, doi: 10.1186/s40703-016-0017-8.   DOI
36 Redmon, J., and Farhadi, A., 2018, Yolov3: An incremental improvement, arXiv preprint, arXiv:1804.02767, doi: 10.48550/arXiv.1804.02767.   DOI
37 Ren, S., He, K., Girshick, R., and Sun, J., 2015, Faster r-cnn: Towards real-time object detection with region proposal networks, Adv. Neural Inf. Process. Syst., 28, doi: 10.48550/arXiv.1506.01497.   DOI
38 Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., and Savarese, S., 2019, Generalized intersection over union: A metric and a loss for bounding box regression, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Expanded Abstracts, 658-666, doi: 10.1109/CVPR.2019.00075.   DOI
39 Tomita, H., Tada, H., Nanbu, T., Chou, K., Nakamura, T., and McGregor, T., 1995, Nature and detection of void-induced pavement failures, Transp. Res. Rec., 1505, 9-16, http://onlinepubs.trb.org/Onlinepubs/trr/1995/1505/1505-002.pdf
40 Wahab, W. A., Jaafar, J., Yassin, I. M., and Ibrahim, M. R., 2013, Interpretation of Ground Penetrating Radar (GPR) image for detecting and estimating buried pipes and cables, 2013 IEEE Int. Conf. Control Syst., Computing and Engineering, Expanded Abstracts, 361-364, doi: 10.1109/ICCSCE.2013.6719990.   DOI
41 Yoon, J. S., Baek, J., Choi, Y. W., Choi, H., and Lee, C. M., 2016, Signal pattern analysis of ground penetrating radar for detecting road cavities. Int. J. Highw. Eng., 18(6), 61-67 (in Korean with English abstract), doi: 10.7855/IJHE.2016.18.6.061.   DOI
42 Zhou, X., Chen, H., and Li, J., 2018, An automatic GPR B-scan image interpreting model. IEEE Trans. Geosci. Remote Sens., 56(6), 3398-3412, doi: 10.1109/TGRS.2018.2799586.   DOI