• 제목/요약/키워드: 자동차 현가장치

검색결과 126건 처리시간 0.025초

주관적인 시험에 의한 자동차 타이어 도로소음 평가 (The Evaluation of the Road Noise of the Automotive Tire by Subjective Test)

  • 이태근;김병삼;조태제
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.91-96
    • /
    • 2008
  • As a remarkable reduction of the vehicle noise, the important of tire noise which is generated from the vehicle and the necessity of the research for the noise reduction is being emphasized. In this study, the road noise which is excited by the interaction between tire and road has been studied. The subjective test(feeling test) according to SAE J1060 rating scale is applied to the evaluation of the road noise. The combination of the several tires and vehicles are made to consider the effect of the vehicle suspension and the tire structure for road noise. The vehicles with 3-different suspension system are applied to road noise test and the eight kinds of tires are selected. As the results, the effects of the vehicle suspension and tire structure which affects on road noise are investigated.

자동차의 승차감을 고려한 현가장치의 동적 성능 해석 (Sensitivity Analysis of Automobile Supension System)

  • 이민호;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.425-431
    • /
    • 1994
  • THe dynamic characteristics of car are determined by ride quality and control stability. These characteristics are maintained by suspension, which is composed of springs, dampers and links. The values of these parameters are very important factor to determine the dynamic characteristic. Until now, most of company depends on trial-and-error method and driving test to solve this problem. But these methods are consumed many costs and time in developing process. In this paper,to minimize these difficulties,the proper model will be developed and analyzed the sensitivity of suspension parameter in time domain. On this ground, find the design parameter that have a dominant infuence on system response and estimate the change of system response values.

  • PDF

LQG/LTR 설계방법을 이용한 자동차 현가장치 능동제어 (Automotive Active Suspension Design Using LQG/LTR Method)

  • 황재혁;박봉철;백승호
    • 소음진동
    • /
    • 제3권4호
    • /
    • pp.383-394
    • /
    • 1993
  • An automotive suspension system generally behaves like a low frequency band-pass filter(0.5 - 10 Hz). Passengers are very sensitive to this frequency range in terms of ride quality and road holding ability. In this paper, a LQG/ LTR controller is suggested to improve the ride quality and road holding ability in the specified frequency rage. It has been found by numerical simulation that the ride quality and road holding ability can be improved in the frequency ranges of 0.5 - 3.0 Hz and 0.3 - 2.1 Hz respectively. In addition, a new approach using root locus to evaluate the stability robustness of the active suspension system is studied. It is shown that the stability robustness of the LQG/LTR controller designed in this paper is improved, compared to the passive system.

  • PDF

전자기 마그네틱 댐퍼를 이용한 자동차 현가계 진동의 능동 제어 연구 (A Study for Active Vibration Control of a Automotive Suspension System Using Electro-magnetic Damper)

  • 이경백;김영배;이형복
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.71-78
    • /
    • 2002
  • This paper is concerned with the design and implementation of magnetic damper system to reduce the vibration of suspension system actively. Cylindrical type electro-magnetic actuator with permanent magnet is analyzed and effective controller design is made. Magnetic force analyzed and transfer function for the total system is determined by experimental data using error minimization method. For experiments, simple suspension structure system is utilized, in which a magnetic damper composed of permanent magnet and digital controller is attached. In order to drive the system, bipolar power amplifier of voltage control type is utilized. Stable and high speed control board is used to perform digital control logic for the given system. This paper shows that the magnetic damper system using phase-lead controller excellently reduces vibration of 1-D.O.F (degree of freedom) suspension system.

자동차 현가 및 조향 장치 부품설계 자동화 시스템 개발 (Development of An Automated Design System for Suspension and Steering parts)

  • 이광일;정승용;조희봉;강재관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.352-356
    • /
    • 2002
  • In this paper, an automated design system of suspension and steering parts is developed. The system automates the processes of 3-D modeling and 2-D drafting of the parts. In addition, the BOM and dimension data of the designed part is also automatically transferred to the database of ERP system. The system is developed by using the functions of parametric design and API(application Programming Interface) of the a commercial solid modeler.

  • PDF

자동차 현가장치용 FRP 판 Spring 제조기술 개발 (Development of the Manufacturing Technology of FRP Leaf Spring for Automotive Suspension)

  • 최선준;박진용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 자동차부품 제작기술의 진보
    • /
    • pp.143-151
    • /
    • 1996
  • In order to reduce the automotive weight, the study exchanging the steel for FRP in leaf spring has been studied. The purposes of this study are to develop more effective manufacturing process of FRP leaf springs than conventional one and to examine the prototype which is made by the developed process. As the results, we have developed more productive manufacturing process by 3-5 times than the conventional one and made FRP leaf spring with equivalent or higher quality than steel.

PIDO 기술을 이용한 차량 전륜 현가계의 다분야통합최적설계 (Multidisciplinary Design Optimization of Vehicle Front Suspension System Using PIDO Technology)

  • 이갑성;박정민;최병렬;최동훈;남찬혁;김기훈
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.1-8
    • /
    • 2012
  • Multidisciplinary design optimization (MDO) for a suspension component of the vehicle front suspension was performed in this research. Shapes and thicknesses of the subframe were optimized to satisfy multi-disciplinary design requirements; weight, fatigue, crash, noise, vibration, and harshness (NVH), and kinematic and compliance (K&C). Analyses procedures of the performance disciplines were integrated and automated by using the process integration and design optimization (PIDO) technique, and the integrated and automated analyses environments enabled various types of analytic design methodologies for solving the MDO problem. We applied an approximate optimization technique which involves sequential sampling and metamodeling. Since the design variables for thicknesses should be dealt as discrete variables. the evolutionary algorithm is selected as optimization technique. The MDO problem was formulated three types of problems according to the order of priorities among the performance disciplines, and the results of MDO provided design alternatives for various design situations.

비선형 점탄성 부싱모델의 회전방향모드에 대한 실험적 연구 (An Experimental Study of Nonlinear Viscoelastic Bushing Model for Torsional Mode)

  • 이성범;이성재;전성철;송동률;정재영;박찬석;이우현
    • Elastomers and Composites
    • /
    • 제43권1호
    • /
    • pp.25-30
    • /
    • 2008
  • 자동차 부싱은 차체로 전달되는 하중을 줄여주는 역할을 하는 자동차 현가장치의 주요 부품으로 바깥쪽 슬리브와 안쪽의 축 사이에서 가운데가 비어 있는 실린더의 형상을 가진다. 차축에 작용되는 힘과 모멘트에 대한 부싱의 상대변위 및 변형각도는 점탄성 성질을 나타내며, 부싱에서 힘과 모멘트와 이에 대한 변위와 변형각도의 관계는 다물체 동역학 시뮬레이션에 매우 중요하다. 본 연구는 자동차 부싱의 회전방향 모드에 대한 모멘트와 변형각도의 점탄성 관계를 변형각도에 의존하는 모멘트 완화함수를 통하여 부싱모델을 완성하였으며, 완성된 점탄성 부싱 모델은 회전방향 모드에 대한 실험값과 비교하여 검증하였다.

현가장치용 겹판스프링의 설계프로그램 개발 (Design Program Development of the Leaf Spring for Suspension)

  • 최선준;최연창;최재찬;권혁
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.20-32
    • /
    • 1995
  • Springs for vehicle suspension control the vibration of a car and influence on the ridability, safety, and life of a car. In the paper, the computer aided design program has been developed, which design the leaf spring shape from the given specifications using basic theory and the expert's knowledge, and the design results are checked by the analysis theory in order to increase the accuracy, and feed back to the design input. For the purpose of easy use, this program consists of pull-down menu and interactive input mode. To prove the effectiveness of this program. two springs, of which one is symmetric, other asymmetric, are designed and analyzed, and the outputs are compared to the experiments. Considering the tolerance of the given specifications, the results are good.

  • PDF

단면 형상의 변화에 따른 LOWER ARM의 응력 해석(I) (Stress Analysis of LOWER ARM for Change of Section Shape(I))

  • 박영철;윤두표;한근조;배명호;진두병;이범재
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.99-107
    • /
    • 1998
  • Stress distribution analysis was implemented by using finite element method for the lower arm connecting Independent front suspension. Results were obtained for the 8 load conditions and for the 3 types of section (I, H and H+I). On the basis of it, the shape and dimensions of lower arm were optimized. Finally it was pointed out that the H type has an most satisfied strength, among 3 section types and highest safety factor and yield strength in each case of load condition.

  • PDF