• 제목/요약/키워드: 자동스위칭

검색결과 94건 처리시간 0.017초

차세대 연료전지 자동차용 25kW, 300kHz 고승압 소프트 스위칭 컨버터 (25 kW, 300 kHz High Step-Up Soft-Switching Converter for Next-Generation Fuel Cell Vehicles)

  • 김선주;하이 뜨란;김진영;기에우 흐우 푹;최세완;박준성;윤혜성
    • 전력전자학회논문지
    • /
    • 제26권6호
    • /
    • pp.404-410
    • /
    • 2021
  • This paper proposes a high step-up converter with zero-voltage transition (ZVT) cell for fuel cell electric vehicle. The proposed converter applies a ZVT cell to a dual floating output boost converter (DFOBC) so that not only the main switch but also the ZVT switch can achieve full-range soft switching. The current rating of the ZVT switch is 17% of the main switch. The proposed converter has high reliability in that no timing issue occurs. Therefore, online calculation is not required. The minimum turn-on time of the ZVT switch that guarantees soft switching at all loads and input/output voltage is obtained by analysis. In addition, the proposed DFOBC allows the use of a 650 V device even at 800 V output and has the advantage of being able to boost the voltage by 3.5 times with 0.56 duty. Planar coupled inductor with PCB winding was successfully implemented with the converter operated at 300 kHz. The 25 kW prototype achieves peak efficiency of 99% and power density of 63 kW/L.

자동 크기 조절 회로와 Switched LC tank를 이용한 집적화된 저위상 잡음 다중 대역 0.13-um CMOS 전압 제어 발진기 (A Fully-Integrated Low Phase Noise Multi-Band 0.13-um CMOS VCO using Automatic Level Controller and Switched LC Tank)

  • 최재원;서철헌
    • 대한전자공학회논문지TC
    • /
    • 제44권1호
    • /
    • pp.79-84
    • /
    • 2007
  • 본 논문에서는 자동 크기 조절 회로 (Automatic Level Controller_ALC)와 switched LC tank를 이용한 집적화된 저위상 잡음 다중 대역 CMOS 전압 제어 발진기를 제안하였다. 제안된 전압 제어 발진기는 0.13-um CMOS 공정으로 설계되었다. Switched LC tank는 MOS 스위치를 이용하여 스위칭되는 한 쌍의 캐패시터와 두 쌍의 인덕터로 설계되었다. 이 구조를 이용하여 4개의 대역 (2.986 ${\sim}$ 3.161, 3.488 ${\sim}$ 3.763, 4.736 ${\sim}$ 5.093, 그리고 5.35 ${\sim}$ 5.887 GHz) 동작이 하나의 전압 제어 발진기를 통하여 이루어졌다. 1.2 V의 공급 전압을 갖는 전압 제어 발진기는 각각 2.986 GHz에서 -118.105 dBc/Hz @ 1 MHz, 5.887 GHz에서 -113.777 dBc/Hz @ 1 MHz의 위상 잡음을 갖는다. 줄어든 위상 잡음은 가장 넓은 주파수 조절 범위인 2.986 ${\sim}$ 5.887 GHz에서 대략 -1 ${\sim}$ -3 dBc/Hz @ 1 MHz이다. 전압 제어 발진기는 전체 주파수 대역에서 4.2 mW ${\sim}$ 5.4 mW의 전력을 소모한다.

비냉각 적외선 센서 어레이를 위한 CMOS 신호 검출회로 (A CMOS Readout Circuit for Uncooled Micro-Bolometer Arrays)

  • 오태환;조영재;박희원;이승훈
    • 전자공학회논문지SC
    • /
    • 제40권1호
    • /
    • pp.19-29
    • /
    • 2003
  • 본 논문에서는 기존의 방법과는 달리 4 단계의 보정 기법을 적용하여 미세한 적외선 (infrared : IR) 신호를 검출해내는 비냉각 적외선 센서 어레이를 위한 CMOS 신호 검출회로를 제안한다. 제안하는 신호 검출회로는 11 비트의 A/D 변환기 (analog-to digital converter : ADC)와 7 비트의 D/A 변환기(digital to-analog converter : DAC), 그리고 자동 이득 조절 회로 (automatic gain control circuit : AGC)로 구성되며, 비냉각 센서 어레이를 동작시키는 DC 바이어스 전류 성분, 화소간의 특성 차이에 의한 변화 성분과 자체 발열 (self-heating)에 의한 변화 성분을 포함하는 적외선 센서 어레이의 출력 신호로부터 미세한 적외선 신호 성분만을 선택적으로 얻어낸다. 제안하는 A/D 변환기에서는 병합 캐패시터 스위칭(merged-capacitor switching : MCS) 기법을 적용하여 면적 및 전력 소모를 최소화하였으며, D/A 변환기에서는 출력단에 높은 선형성을 가지는 전류 반복기를 사용하여 화소간의 특성 차이에 의한 변화 성분과 자체 발열에 의한 변화 성분을 보정할 수 있도록 하였다. 시제품으로 제작된 신호 검출회로는 1.2 um double-poly double-metal CMOS 공정을 사용하였으며, 4.5 V 전원전압에서 110 ㎽의 전력을 소모한다. 제작된 시제품으로부터 측정된 검출회로의 differential nonlinearity (DNL)와 integral nonlinearity (INL)는 A/D 변환기의 경우 11 비트의 해상도에서 ±0.9 LSB와 ±1.8 LSB이며, D/A 변환기의 경우 7비트의 해상도에서 ±0.1 LSB와 ±0.1 LSB이다.

진동형 각속도 검출 센서를 위한 애널로그 신호처리 ASIC의 구현 (Implementation of Analog Signal Processing ASIC for Vibratory Angular Velocity Detection Sensor)

  • 김청월;이병렬;이상우;최준혁
    • 대한전자공학회논문지SD
    • /
    • 제40권4호
    • /
    • pp.65-73
    • /
    • 2003
  • 본 논문은 진동형 각속도 검출 센서로부터 각속도 신호를 검출하는 애널로그 신호처리 ASIC의 구현에 관한 것이다. 각속도 검출 센서의 출력은 구조적으로 콘덴서의 용량변화로 나타나므로 이를 검출하기 위하여 전하 증폭기를 이용하였으며, 센서의 구동에 필요한 자체발진회로는 각속도 검출 센서의 공진 특성을 이용한 정현파 발진회로로 구현하였다. 특히 센서의 제조 공정으로 인한 특성 변화나 온도 변화와 같은 외부 요인에 의한 자체발진특성의 열화를 방지하기 위하여 자동이득조절회로를 사용하였다. 진동형 각속도 검출 센서의 동작특성에 의하여 진폭변조 형태로 나타나는 각속도 신호를 검출하기 위하여 동기검파회로를 사용하였다. 동기검파회로에서는 반송파의 크기에 따라 검파신호의 크기가 달라지는 현상을 방지하기 위하여 스위칭 방식의 곱셈회로를 사용하였다. 설계된 칩은 0.5㎛ CMOS 공정으로 구현하였으며, 1.2㎜×1㎜의 칩 크기로 제작되었다. 실험 결과 3V의 전원전압에서 3.6mA의 전류를 소비하였으며, 칩과 각속도 센서를 결합한 정상동작상태에서 직류에서 50㎐까지 잡음 스펙트럼 밀도는 -95 dBrms/√㎐에서 -100 dBrms/√㎐ 사이에 존재하였다.