본 논문에서는 프레스공정라인에서 발생하는 고장을 감지하고 분류하기 위한 고장진단기법을 제안한다. 또한 윤활유 레벨을 자동감지 하기 위한 방법도 제안하다. 제안한 방법에서는 FFT 주파수해석과 여러 경계인수를 갖는 ART2 신경회로망을 사용하며, LabVIEW를 이용하여 고장진단 및 윤활유 레벨 자동감시를 위한 GUI(Graphical User Interface) 프로그램을 제작하여 고장진단을 수행하였다. 실험결과들로부터 제안한 유도전동기 고장진단 및 윤활유 레벨 자동감시시스템의 성능을 확인하였다.
산업 전반에 걸쳐 유도 전동기는 필수적인 요소로 그 비중이 매우 크다. 이에 수반하여 유도 전동기의 고장은 단지 유도 전동기라는 전기기기에 국한되는 것뿐만 아니라 진동기의 다른 부분에 영향을 미치거나 다른 고장을 유발하는 원인이 되기도 한다. 이는 산업 시스템의 신뢰성을 실추시키는 악영향을 수반한다. 따라서 이를 예방하기 위한 여러 연구가 진행되고 있다. 본 논문에서는 산업 전반에 걸쳐 널리 사용되고 있는 유도 전동기의 고장을 자동 판별하는 시스템을 제안한다. 이 시스템의 고장진단 방법은 고정자 전류를 취득하여 이를 웨이블릿 분석하여 그 신호의 특징을 추출한다 이렇게 추출된 신호의 특징을 신경망을 사용해서 자동 판별하게 된다. 유도 전동기의 고장의 대부분을 차지하는 3가지의 고장을 모의 고장 유도전동기를 사용해서 시험하였다. 제안하는 시스템은 3가지의 유도 전동기의 고장을 간단한 장비로 진단을 수행하여 신뢰도 높은 고장 진단 시스템을 제안하였다.
본 논문에서는 변전소의 변전설비에 대한 고장진단을 위한 전문가 시스템을 개발하였다. 제안된 전문가 시스템에서는 변전소의 구조적 특성을 효과적으로 이용하기 위하여 두 종류의 새로운 자료 구조를 제안하였다. 먼저 설비 연결자료로, 이는 변전소의 수전단에서 배전단으로 이어지는 계층적 구조를 이용하여 소내 설비들의 전기적 연결상태 인식을 효과적으로 수행할 수 있도록 한다. 다음으로, 각 보호 계전기의 보호 영역 자료를 제안하였는데, 이것은 전문가 시스템 가동시에 자동으로 구성되면, 보호계전기의 주보호 설비 뿐만 아니라 후비보호와 2차 후비보호 등의 설비들을 탐색하여 자료구조에 포함함으로써 추론의 효율을 높였다. 본 전문가 시스템에서는 2단계 추론을 수행하는데, 1단계에서는 설비 연결자료와 보호 영역 자료를 이용하여 고장 후보들을 선정하고 2단계에서는 보호기기 동작간의 인과관계를 이용하여 고장 위치를 파악하고 동작한 보호기기들에 대한 설명을 하도록 하였다. 제안한 전문가 시스템은 실제 154[kV]급 변전소 모형에 적용하여 도출된 결과의 타당성과 수행시간의 실효성을 보였다.
기기의 결함을 진단하는데에 전문자동진단시스템(EADS)을 사용하는 것은 고도의 숙련된 진단요원 없이, 시스템저자와의 질의응답과 같은 일련의 회의를 갖지 않고도 정확하고 또한 믿을만하게 기기상태를 측정 분석할 수 있는 가장 효과적인 방법이다. 전문자동진단시스템(EADS)은 일분에 5개의 기기들을 분석하고 진동전문분석가에 버금가는(94%) 정확성으로 진단결과를 제공한다. 많은 전문진단시스템 중에서 DLI의 ExpertALERT[4]는 가장 정확하고 정교한 진단시스템으로 평가되고 있다. 전문자동진단시스템(EADS)의 시행으로 프렌트의 기기고장으로 인한 조업중단의 회수가 줄어지고 정비비용을 절감하며 불필요한 정기점검식정비(PM)을 없앤다면 관계기술요원들의 진동에 대한 이해와 기술습득으로 한차원 높은 기기 정비를 통해 효율적인 생산성증가, 정비비용감소[5], 안전사고 미연방지등 많은 것을 함께 얻을 수 있다. Expert System 기술의 성공적인 적용이라고 정의할 수 있겠다.
소리 기반 기계 고장 진단은 기계의 음향 방출 신호에서 비정상적인 소리를 자동으로 감지하는 것이다. 수학적 모델을 사용하는 기존의 방법은 기계 시스템의 복잡성과 잡음과 같은 비선형 요인이 존재하기 때문에 기계 고장 진단이 어려웠다. 따라서 기계 고장 진단의 문제를 패턴 인식 문제로 해결하고자 한다. 본 논문에서 DWT와 인공신경망 기반 패턴 인식 기법을 이용한 자동화 기계 고장 진단 기법을 제안한다. 기계의 결함을 효과적으로 탐지하기 위해 DWT를 이용해 대역별 분해 후 최상위 고주파 부대역과 최하위 저주파 부대역을 제외한 나머지 부대역의 PSD를 구하여 인공신경망 기반 분류기의 입력으로 사용한다. 그 결과 본 연구에서 제안한 방법은 효과적으로 결함을 탐지할 뿐만 아니라 소리 기반의 다양한 자동 진단 시스템에도 효과적으로 활용될 수 있음을 보여준다.
소리 기반 기계 고장 진단은 기계의 음향 방출 신호에서 비정상적인 소리를 자동으로 감지하는 것이다. 수학적 모델을 사용하는 기존의 방법은 기계 시스템의 복잡성과 잡음과 같은 비선형 요인이 존재하기 때문에 기계 고장 진단이 어려웠다. 따라서 기계 고장 진단의 문제를 딥러닝 기반 이미지 분류 문제로 해결하고자 한다. 본 논문에서 스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법을 제안한다. 제안한 방법은 기계의 결함 시 발생하는 주파수상의 특징 벡터를 효과적으로 추출하기 위해 STFT를 사용하였으며, STFT에 의해 검출된 특징 벡터들은 스펙트로그램 이미지로 변환하여 CNN을 이용해 기계의 상태별로 분류한다. 그 결과는 제안한 방법은 효과적으로 결함을 탐지할 뿐만 아니라 소리 기반의 다양한 자동 진단 시스템에도 효과적으로 활용될 수 있다.
자동항법장치(Auto-Pilot System)에 의한 방향제어는 방위계측센서에 의해 계측된 위치 정보와 선미조타장치를 바탕으로 이루어진다. 대부분의 제어시스템들은 센서 잡음을 제외하고는 고장이 없는 계측장비와 고장없는 actuator를 가정하여 상태추정 빛 제어알고리듬을 구현하고 있다. 그러나 실제 상황에서는 이러한 가정이 위험한 경우가 많다. 즉, 방위 계측장비가 고장인 난 경우, 이 잘못된 위치 정보에 기초한 제어기능은 심각한 안전상의 문제까지도 야기시킬 수 있는 것이다. 본 연구에서는 개선된 위치정보처리 방법을 포함시킨 제어시스템을 Auto-Pilot 시스템에 적용하여 보았다. 그 방법으로 센서 고장 진단 및 actuator 고장 진단용 BJDF(Beard-Jones Detection Filter)를 설계하여 그 기능을 파악하였고 일반적인 상태변수추정기와의 차이점을 보였다. 특히 센서의 Bias Error의 경우 상태변수 확장기법을 이용하여 actuator 고장진단의 모형으로 모형화 할 수 있음을 보였다. 이로 인하여 센서 고장의 경우 2차원 평면에 국한된 residual이 일정 방향의 residual로 되므로 고장진단이 용이함을 알 수 있었다.
배전선로상에서는 상 불평, 고저항 지락사고나 선로탈락이 발생할 수 있다. 또한, 고장 감지기 정보의 불확실성 등으로 배전 SCADA 정보로부터 정확한 사고유형과 사고위치를 확인하는 작업은 매우 어렵다. 따라서 본 연구에서는 배전선로상에서 발생할 수 있는 다양한 사고들에 대해 사고유형과 사고발생 위치를 신속하고 정확하게 추론할 수 있는 전문가 시스템을 제안한다. 전문가 시스템은 배전 SCADA기능과 수집된 데이터를 종합적으로 활용하게 되는데, 특히, 정확한 사고유형 확인을 위해 절분점 감시 메카니즘이 새롭게 채택되며, 또한, 선로사고시 시스템 운영자들의 오류로부터 발생할 수 있는 파급효과를 최소화하기 위해 고장구간의 자동진단 전략이 개발된다.
The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. In this study, an air handling unit fault test apparatus was built and fault diagnosis algorithms were applied to diagnose various faults of an air handling unit. Test results showed the good diagnosis for applied faults. Therefore, these algorithms may be effectively used to develope the real time fault detection and diagnosis system for the air handling unit.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.