• Title/Summary/Keyword: 자동고장진단시스템

Search Result 43, Processing Time 0.022 seconds

Diagnostic system development for state monitoring of induction motor and oil level in press process system (프레스공정시스템에서 유도전동기 및 윤활유 레벨 상태모니터링을 위한 진단시스템 개발)

  • Lee, In-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.706-712
    • /
    • 2009
  • In this paper, a fault diagnosis method is proposed to detect and classifies faults that occur in press process line. An oil level automatic monitoring method is also presented to detect oil level. The FFT(fast fourier transform) frequency analysis and ART2 NN(adaptive resonance theory 2 neural network) with uneven vigilance parameters are used to achieve fault diagnosis in proposing method, and GUI(graphical user interface) program for fault diagnosis and oil level automatic monitoring using LabVIEW is produced and fault diagnosis was done. The experiment results demonstrate the effectiveness of the proposed fault diagnosis method of induction motors and oil level automatic monitor system.

The Diagnosis of Squirrel-cage Induction Motor Using Wavelet Analysis and Neural Network (웨이블릿 분석과 신경망을 이용한 농형 유도전동기 고장 진단)

  • Lee, Jae-Yong;Kang, Dae-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • The induction motor is given a great deal of weight on the industry generally. Therefore, the fault of the induction motor may cause the fault to effect another parts or another faults in the whole system as well as in itself. These are accompany with a lose of the reliability in the industrial system. Accordingly to prevent these situation, the scholars have studies the fault diagnosis of the induction motor. In this paper, we proposed the diagnosis system of the induction motor. The method of diagnosis in proposed system is extracted the feature of the current signal by the wavelet transform. These extracted feature is used the automatic discrimination system by the neural network. We experiment the automatic discrimination system using the three faults imitation that often generated in the induction motor. The proposed system have achieved high reliable result with a simple devices about the three faults.

  • PDF

An Expert System for Fault Diagnosis in a Substation (변전소 고장진단을 위한 전문가 시스템)

  • 박영문;최면송;김광원;현승호
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.1
    • /
    • pp.46-55
    • /
    • 1996
  • 본 논문에서는 변전소의 변전설비에 대한 고장진단을 위한 전문가 시스템을 개발하였다. 제안된 전문가 시스템에서는 변전소의 구조적 특성을 효과적으로 이용하기 위하여 두 종류의 새로운 자료 구조를 제안하였다. 먼저 설비 연결자료로, 이는 변전소의 수전단에서 배전단으로 이어지는 계층적 구조를 이용하여 소내 설비들의 전기적 연결상태 인식을 효과적으로 수행할 수 있도록 한다. 다음으로, 각 보호 계전기의 보호 영역 자료를 제안하였는데, 이것은 전문가 시스템 가동시에 자동으로 구성되면, 보호계전기의 주보호 설비 뿐만 아니라 후비보호와 2차 후비보호 등의 설비들을 탐색하여 자료구조에 포함함으로써 추론의 효율을 높였다. 본 전문가 시스템에서는 2단계 추론을 수행하는데, 1단계에서는 설비 연결자료와 보호 영역 자료를 이용하여 고장 후보들을 선정하고 2단계에서는 보호기기 동작간의 인과관계를 이용하여 고장 위치를 파악하고 동작한 보호기기들에 대한 설명을 하도록 하였다. 제안한 전문가 시스템은 실제 154[kV]급 변전소 모형에 적용하여 도출된 결과의 타당성과 수행시간의 실효성을 보였다.

  • PDF

Successful Application of an Expert System to Predictive Maintenance (예지정비(PdM)와 Expert System)

  • ;Van Dyke, David J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.138-143
    • /
    • 1994
  • 기기의 결함을 진단하는데에 전문자동진단시스템(EADS)을 사용하는 것은 고도의 숙련된 진단요원 없이, 시스템저자와의 질의응답과 같은 일련의 회의를 갖지 않고도 정확하고 또한 믿을만하게 기기상태를 측정 분석할 수 있는 가장 효과적인 방법이다. 전문자동진단시스템(EADS)은 일분에 5개의 기기들을 분석하고 진동전문분석가에 버금가는(94%) 정확성으로 진단결과를 제공한다. 많은 전문진단시스템 중에서 DLI의 ExpertALERT[4]는 가장 정확하고 정교한 진단시스템으로 평가되고 있다. 전문자동진단시스템(EADS)의 시행으로 프렌트의 기기고장으로 인한 조업중단의 회수가 줄어지고 정비비용을 절감하며 불필요한 정기점검식정비(PM)을 없앤다면 관계기술요원들의 진동에 대한 이해와 기술습득으로 한차원 높은 기기 정비를 통해 효율적인 생산성증가, 정비비용감소[5], 안전사고 미연방지등 많은 것을 함께 얻을 수 있다. Expert System 기술의 성공적인 적용이라고 정의할 수 있겠다.

  • PDF

Fault Diagnosis Method for Automatic Machine Using Artificial Neutral Network Based on DWT Power Spectral Density (인공신경망을 이용한 DWT 전력스펙트럼 밀도 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.78-83
    • /
    • 2019
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically abnormal sound on machines using the acoustic emission by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose here an automatic fault diagnosis method of hand drills using discrete wavelet transform(DWT) and pattern recognition techniques such as artificial neural networks(ANN). We first conduct a filtering analysis based on DWT. The power spectral density(PSD) is performed on the wavelet subband except for the highest and lowest low frequency subband. The PSD of the wavelet coefficients are extracted as our features for classifier based on ANN the pattern recognition part. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.

CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images (스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.121-126
    • /
    • 2020
  • Sound-based machine fault diagnosis is the automatic detection of abnormal sound in the acoustic emission signals of the machines. Conventional methods of using mathematical models were difficult to diagnose machine failure due to the complexity of the industry machinery system and the existence of nonlinear factors such as noises. Therefore, we want to solve the problem of machine fault diagnosis as a deep learning-based image classification problem. In the paper, we propose a CNN-based automatic machine fault diagnosis method using Spectrogram images. The proposed method uses STFT to effectively extract feature vectors from frequencies generated by machine defects, and the feature vectors detected by STFT were converted into spectrogram images and classified by CNN by machine status. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.

Failure Detection Filter for the Sensor and Actuator Failure in the Auto-Pilot System (Auto-Pilot 시스템의 센서 및 actuator 고장진단을 위한 Failure Detection Filter)

  • Sang-Hyun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.8-16
    • /
    • 1993
  • Auto-Pilot System uses heading angle information via the position sensor and the rudder device to control the ship direction. Most of the control logics are composed of the state estimation and control algorithms assuming that the measurement device and the actuator have no fault except the measurement noise. But such asumptions could bring the danger in real situation. For example, if the heading angle measuring device is out of order the control action based on those false position information could bring serious safety problem. In this study, the control system including improved method for processing the position information is applied to the Auto-Pilot System. To show the difference between general state estimator and F.D.F., BJDFs for the sensor and the actuator failure detection are designed and the performance are tested. And it is shown that bias error in sensor could be detected by state-augmented estimator. So the residual confined in the 2-dim in the presence of the sensor failure could be unidirectional in output space and bias sensor error is much easier to be detected.

  • PDF

An Expert System for the Diagnosis of the Fault Type and Fault Loaction In the Distribution SCADA System (배전 SCADA 기능을 이용한 고장타입.고장위치 진단 전문가 시스템)

  • Ko, Yun-Seok;Shin, Hyun-Yong;Sheen, Duc-Ko;Lee, Kee-Seo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1413-1415
    • /
    • 1999
  • 배전선로상에서는 상 불평, 고저항 지락사고나 선로탈락이 발생할 수 있다. 또한, 고장 감지기 정보의 불확실성 등으로 배전 SCADA 정보로부터 정확한 사고유형과 사고위치를 확인하는 작업은 매우 어렵다. 따라서 본 연구에서는 배전선로상에서 발생할 수 있는 다양한 사고들에 대해 사고유형과 사고발생 위치를 신속하고 정확하게 추론할 수 있는 전문가 시스템을 제안한다. 전문가 시스템은 배전 SCADA기능과 수집된 데이터를 종합적으로 활용하게 되는데, 특히, 정확한 사고유형 확인을 위해 절분점 감시 메카니즘이 새롭게 채택되며, 또한, 선로사고시 시스템 운영자들의 오류로부터 발생할 수 있는 파급효과를 최소화하기 위해 고장구간의 자동진단 전략이 개발된다.

  • PDF

An Experimental Study on the Rule Based Fault Detection and Diagnosis System for a Constant Air Volume Air Handling Unit (룰 베이스를 이용한 정풍량 공조기 고장 검출 및 진단 시스템의 실험적 연구)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.872-880
    • /
    • 2004
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. In this study, an air handling unit fault test apparatus was built and fault diagnosis algorithms were applied to diagnose various faults of an air handling unit. Test results showed the good diagnosis for applied faults. Therefore, these algorithms may be effectively used to develope the real time fault detection and diagnosis system for the air handling unit.