• Title/Summary/Keyword: 자동경로비행

Search Result 37, Processing Time 0.021 seconds

Structure Design of Surveillance Location-Based UAV Motor Primitives (감시 위치 기반의 UAV 모터프리미티브의 구조 설계)

  • Kwak, Jeonghoon;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.181-186
    • /
    • 2016
  • Recently, the surveillance system research has focused because Unmanned Aerial Vehicle(UAV) has the ability to monitor wide area. When the wide area are monitored, controlling UAVs repeatedly by pilots invokes the cost problem to operate UAVs. If monitoring path can be defined in advance, the cost problem can be solved by controlling UAVs autonomously based on the monitoring path. The traditional approach generates multiple motor primitives based on flied GPS locations. However, the monitoring points by UAVs are not considered by the generated motor primitives, the surveillance by UAVs is not performed properly. This paper proposes a motor primitive structure for surveillance UAVs to be flied autonomously. Motor primitives are generated automatically by setting surveillance points to denote surveillance targets accurately.

Pre-simulation based Automatic Landing Approach by Waypoint Guidance for Fixed-Wing UAV (사전 시뮬레이션과 점항법 유도를 이용한 고정익 무인기의 자동 착륙 접근)

  • Lee, Jehoon;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.557-564
    • /
    • 2021
  • This paper describes an automatic landing approach algorithm for fixed-wing UAVs using waypoint guidance. The proposed algorithm utilizes simple 2D Dubin's vehicle pre-simulations in planning the waypoints for landing approach. The remaining time to reach the runway is also estimated in the pre-simulation, and it is used for altitude control. The performance of the designed algorithm was verified by simulations and flight tests.

Georegistration of Airborne LiDAR Data Using a Digital Topographic Map (수치지형도를 이용한 항공라이다 데이터의 기하보정)

  • Han, Dong-Yeob;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.323-332
    • /
    • 2012
  • An airborne LiDAR system performs several observations on flight routes to collect data of targeted regions accompanying with discrepancies between the collected data strips of adjacent routes. This paper aims to present an automatic error correction technique using modified ICP as a way to remove relative errors from the observed data of strip data between flight routes and to make absolute correction to the control data. A control point data from the existing digital topographic map were created and the modified ICP algorithm was applied to perform the absolute automated correction on the relatively adjusted airborne LiDAR data. Through such process we were able to improve the absolute accuracy between strips within the average point distance of airborne LiDAR data and verified the possibility of automation in the geometric corrections using a large scale digital map.

Patrol Monitoring Plan for Transmission Towers with a Commercial Drone and its Field Tests (상용화 드론을 이용한 송전선로 점검방안 및 현장시험)

  • Kim, Seok-Tae;Park, Joon-Young;Lee, Jae-Kyung;Ham, Ji-Wan;Choi, Min-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • Various types of robots running on power transmission lines have been developed for the purpose of line patrol monitoring. They usually have complex mechanism to run and avoid obstacles on the power line, but nevertheless did not show satisfactory performance for going over the obstacles. Moreover, they were so heavy that they could not be easily installed on the lines. To compensate these problems, flying robots have been developed and recently, multi-copter drones with flight stability have been used in the electric power industry. The drones could be remotely controlled by human operators to monitor power distribution lines. In the case of transmission line patrol, however, transmission towers are huge and their spans are very long, and thus, it is very difficult for the pilot to control the patrol drones with the naked eye from a long distance away. This means that the risk of a drone crash onto electric power facilities always resides. In addition, there exists another danger of electromagnetic interference with the drones on autopilot waypoint tracking under ultra-high voltage environments. This paper presents a patrol monitoring plan of autopilot drones for power transmission lines and its field tests. First, the magnetic field effect on an autopilot patrol drone is investigated. Then, how to build the flight path to avoid the magnetic interference is proposed and our autopilot drone system is introduced. Finally, the effectiveness of the proposed patrol plan is confirmed through its field test results in the 154 kV, 345 kV and 765 kV transmission lines in Chungcheongnam-do.

Design and Flight Test of Path Following System for an Unmanned Airship (무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험)

  • Jung, Kyun-Myung;Sung, Jae-Min;Kim, Byoung-Soo;Je, Jeong-Hyeong;Lee, Sung-Gun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.

A Point Navigation Guidance Law for Unmanned Helicopter Using Predicted Position (위치 예측에 기반한 무인헬기 점항법 유도법칙 개발)

  • Kim, Seong-Pil;Lee, Jang-Ho;Kim, Bong-Ju;Gwon, Hyeong-Jun;Kim, Eung-Tae;An, Lee-Gi
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents a new point navigation guidance law which is useful for unmanned helicopters. Predicting the future position, the guidance law generates velocity and heading commands, which are used as input to autopilot. This method differs from conventional guidance law in that it reorients the direction of flight velocity vector directly, not by bank angle indirectly. For flight tests, we have developed a flight control system for a R/C helicopters. The system consists of a flight control computer, navigation sensors, and a ground station The results of the test show that the proposed law guides a unmanned helicopter along a line path within a given area. In the future, we are planning to extend the guidance law to the mission of path following. i.e., waypoint navigation.

  • PDF

Design of Deep Learning-Based Automatic Drone Landing Technique Using Google Maps API (구글 맵 API를 이용한 딥러닝 기반의 드론 자동 착륙 기법 설계)

  • Lee, Ji-Eun;Mun, Hyung-Jin
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • Recently, the RPAS(Remote Piloted Aircraft System), by remote control and autonomous navigation, has been increasing in interest and utilization in various industries and public organizations along with delivery drones, fire drones, ambulances, agricultural drones, and others. The problems of the stability of unmanned drones, which can be self-controlled, are also the biggest challenge to be solved along the development of the drone industry. drones should be able to fly in the specified path the autonomous flight control system sets, and perform automatically an accurate landing at the destination. This study proposes a technique to check arrival by landing point images and control landing at the correct point, compensating for errors in location data of the drone sensors and GPS. Receiving from the Google Map API and learning from the destination video, taking images of the landing point with a drone equipped with a NAVIO2 and Raspberry Pi, camera, sending them to the server, adjusting the location of the drone in line with threshold, Drones can automatically land at the landing point.

Study of the UAV for Application Plans and Landscape Analysis (UAV를 이용한 경관분석 및 활용방안에 관한 기초연구)

  • Kim, Seung-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.213-220
    • /
    • 2014
  • This is the study to conduct the topographical analysis using the orthophotographic data from the waypoint flight using the UAV and constructed the system required for the automatic waypoint flight using the multicopter.. The results of the waypoint photographing are as follows. First, result of the waypoint flight over the area of 9.3ha, take time photogrammetry took 40 minutes in total. The multicopter have maintained the certain flight altitude and a constant speed that the accurate photographing was conducted over the waypoint determined by the ground station. Then, the effect of the photogrammetry was checked. Second, attached a digital camera to the multicopter which is lightweight and low in cost compared to the general photogrammetric unmanned airplane and then used it to check its mobility and economy. In addition, the matching of the photo data, and production of DEM and DXF files made it possible to analyze the topography. Third, produced the high resolution orthophoto(2cm) for the inside of the river and found out that the analysis is possible for the changes in vegetation and topography around the river. Fourth, It would be used for the more in-depth research on landscape analysis such as terrain analysis and visibility analysis. This method may be widely used to analyze the various terrains in cities and rivers. It can also be used for the landscape control such as cultural remains and tourist sites as well as the control of the cultural and historical resources such as the visibility analysis for the construction of DSM.

Two-Dimensional Entropy Minimizing Autofocusing of Millimeter-Wave (W-Band) FMCW SAR (밀리미터파(W 밴드) 탐색기용 FMCW SAR 영상의 2차원 엔트로피 최소 자동 초점 기법)

  • Park, Jaehyun;Chun, Joohwan;Lee, Hyukjung;Song, Sungchan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.316-319
    • /
    • 2018
  • To detect the ground moving target, forward-looking SAR images obtained from the FMCW radar can be exploited. However, the quality of the SAR image is deteriorated due to the turbulence or fluctuation because of the flight path condition during the missile movement. We herein propose an entropy-minimizing autofocus method to compensate the motion error of forward-looking SAR. In particular, owing to the geometry of the forward-looking SAR, the motion error affects the SAR image in the two-dimensional (2D) form (azimuth and time axis). Therefore, we suggest a 2D autofocus method for the motion compensation.

Auto-Tracking Camera Gimbal for Power Line Inspection Drone and its Field Tests on 154 kV Transmission Lines (송전선로 자동추적 카메라 짐벌 및 154 kV 송전선로 현장시험)

  • Kim, Seok-Tae;Park, Joon-Young;Lee, Jae-Kyung;Ham, Ji-Wan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.149-156
    • /
    • 2019
  • In the field of maintenance of power transmission lines, drones have been used for their patrol and inspection by KEPCO since 2017. This drone technology was originally developed by KEPCO Research Institute, and now workers from four regional offices of KEPCO have directly applied this technology to the drone patrol and inspection tasks. In the drone inspection system, a drone with an optical zooming camera and a thermal camera can fly automatically along the transmission lines by the ground control system developed by KEPCO Research Institute, but its camera gimbal has been remotely controlled by a field worker. Especially the drone patrol and inspection has been mainly applied for the transmission lines in the inaccessible areas such as regions with river-crossings, sea-crossings and mountains. There are often communication disruptions between the drone and its remote controller in such extreme fields of mountain areas with many barriers. This problem may cause the camera gimbal be out of control, even though the inspection drone flies along the flight path well. In addition, interference with the reception of real-time transmitted videos makes the field worker unable to operate it. To solve these problems, we have developed the auto-tracking camera gimbal system with deep learning method. The camera gimbal can track the transmission line automatically, even when the transmitted video on a remote controller is intermittently unavailable. To show the effectiveness of our camera gimbal system, its field test results will be presented in this paper.