• 제목/요약/키워드: 자기 조직화 신경망

검색결과 76건 처리시간 0.027초

Self-organizing map을 이용한 강우 지역빈도해석의 지역구분 및 적용성 검토 (Assessing applicability of self-organizing map for regional rainfall frequency analysis in South Korea)

  • 안현준;신주영;정창삼;허준행
    • 한국수자원학회논문집
    • /
    • 제51권5호
    • /
    • pp.383-393
    • /
    • 2018
  • 지역빈도해석은 대상 지점과 수문학적 동질성을 만족하는 주변 지점을 하나의 지역으로 보고 빈도해석을 수행하는 방법이다. 따라서 동질한 지역의 구분은 지역빈도해석에 있어서 가장 중요한 가정이라고 할 수 있다. 이에 본 연구에서는 인공신경망 기법중 하나인 자기조직화지도(self-organizing map, SOM) 기법을 활용하여 강우 지역빈도해석을 위한 동질 강수 지역을 구분하였다. 지역구분 인자로는 지형 정보와 시 단위 강우 자료를 활용하였다. 최적 SOM 지도 구성을 위해 정량적 오차와 위상관계 오차를 활용하였다. 그 결과 $7{\times}6$ 배열의 42개의 노드를 갖는 모형을 선정하였고 최종적으로 강우 지역빈도해석을 위해 6개의 군집으로 구분하였다. 동질성 검토 결과 6개의 군집 모두 동질한 지역으로 나타났으며 기존의 유사하게 구분된 지역들과 이질성 척도를 비교하였을 때 좀 더 안정적인 지역 구분결과를 나타내는 것을 확인하였다.

폐수의 무단 방류 모니터링을 위한 센서배치 우선지역 결정: 자기조직화지도 인공신경망의 적용 (Real-time monitoring sensor displacement for illicit discharge of wastewater: identification of hotspot using the self-organizing maps (SOMs))

  • 남성남;이성훈;김정률;이재현;오재일
    • 상하수도학회지
    • /
    • 제33권2호
    • /
    • pp.151-158
    • /
    • 2019
  • Objectives of this study were to identify the hotspot for displacement of the on-line water quality sensors, in order to detect illicit discharge of untreated wastewater. A total of twenty-six water quality parameters were measured in sewer networks of the industrial complex located in Daejeon city as a test-bed site of this study. For the water qualities measured on a daily basis by 2-hour interval, the self-organizing maps(SOMs), one of the artificial neural networks(ANNs), were applied to classify the catchments to the clusters in accordance with patterns of water qualities discharged, and to determine the hotspot for priority sensor allocation in the study. The results revealed that the catchments were classified into four clusters in terms of extent of water qualities, in which the grouping were validated by the Euclidean distance and Davies-Bouldin index. Of the on-line sensors, total organic carbon(TOC) sensor, selected to be suitable for organic pollutants monitoring, would be effective to be allocated in D and a part of E catchments. Pb sensor, of heavy metals, would be suitable to be displaced in A and a part of B catchments.

이동통신 사용패턴을 이용한 고객의 직업판정 (Customer's Job Identification using the Usage Patterns of Mobile Telecommunication)

  • 이재식;조유정
    • 지능정보연구
    • /
    • 제10권3호
    • /
    • pp.115-132
    • /
    • 2004
  • 최근 기업들이 고객관계관리의 중요성을 인식함에 따라 고객에 대한 이해의 필요성이 증대되고 있다. 고객의 직업은 고객을 이해하는데 있어서 매우 중요한 정보이다. 하지만 대부분의 고객들이 자신의 직업을 노출하는 것을 꺼리기 때문에 기업에게 그들의 직업을 알려주지 않는 것이 다반사이고, 심지어는 잘못된 직업을 알려주기도 한다. 본 연구의 대상은 이동통신서비스 업체이다. 본 연구에서 우리는 통화상세이력 데이터를 이용하여 고객의 직업을 판정하는 모델을 구축하였다. 인공신경망을 이용해서 우리는 두 단계로 이루어진 직업판정 모델을 구축하였다. 첫번째 단계에서는 먼저 4개의 직업군을 판정하였고, 두 번째 단계에서 이 4개의 직업군을 세분하여 총 7개의 직업을 판정하였다. 이러한 방식으로 7개의 직업을 판정한 모델의 최종적중률은 $71.9\%$이었다.

  • PDF

비쥬얼패스맵을 이용한 운동처방 과정 시각화 (Visualizing Excercise Prescription Using Visual Path Map)

  • 함준석;정찬순;고일주
    • 한국멀티미디어학회논문지
    • /
    • 제14권9호
    • /
    • pp.1182-1189
    • /
    • 2011
  • 본 논문에서는 대상자의 체력상태에 따른 군집과 운동처방 과정 전반을 시각화 하는 방법을 비쥬얼패스맵이라 명명하고, 비쥬얼패스맵을 이용하여 운동처방사의 처방과정을 시각화하는 것을 목표로 한다. 비쥬얼패스맵은 대상자의 체력상태에 따른 군집 분포, 대상자의 현재 상태와 목표 상태, 운동처방에 따라 어떤 군집에 속하게 될지를 보여준다. 그래서 비쥬얼패스맵은 운동처방 안에 따라 현재 상태에서 목표 상태에 이르기까지의 경로를 나타내게 된다. 비쥬얼패스맵에서 대상자의 특성 간 군집을 표현하기 위해 인공신경망 SOM을 이용했고, 일반인 1,500명의 체력검사 결과값, 비만도, 나이 정보를 학습하여 군집형태를 시각화했다. 또한 운동처방사의 운동처방 자료를 이용하여 운동처방 과정을 비쥬얼패스맵으로 시각화했다.

조선기술지식 관리를 위한 개선된 데이터 마이닝 시스템 개발 (Development of Enhanced Data Mining System for the knowledge Management in Shipbuilding)

  • 이경호;양영순;오준;박종훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.298-302
    • /
    • 2006
  • As the age of information technology is coming, companies stress the need of knowledge management. Companies construct ERP system including knowledge management. But, it is not easy to formalize knowledge in organization. we focused on data mining system by using genetic programming. But, we don't have enough data to perform the learning process of genetic programming. We have to reduce input parameter(s) or increase number of learning or training data. In order to do this, the enhanced data mining system by using GP combined with SOM(Self organizing map) is adopted in this paper. We can reduce the number of learning data by adopting SOM.

  • PDF

대체공정이 있는 기계-부품 그룹의 형성 - 자기조직화 신경망을 이용한 해법 - (Machine-Part Grouping with Alternative Process Plan - An algorithm based on the self-organizing neural networks -)

  • 전용덕
    • 산업경영시스템학회지
    • /
    • 제39권3호
    • /
    • pp.83-89
    • /
    • 2016
  • The group formation problem of the machine and part is a critical issue in the planning stage of cellular manufacturing systems. The machine-part grouping with alternative process plans means to form machine-part groupings in which a part may be processed not only by a specific process but by many alternative processes. For this problem, this study presents an algorithm based on self organizing neural networks, so called SOM (Self Organizing feature Map). The SOM, a special type of neural networks is an intelligent tool for grouping machines and parts in group formation problem of the machine and part. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. In the proposed algorithm, output layer in SOM network had been set as one-dimensional structure and the number of output node has been set sufficiently large in order to spread out the input vectors in the order of similarity. In the first stage of the proposed algorithm, SOM has been applied twice to form an initial machine-process group. In the second stage, grouping efficacy is considered to transform the initial machine-process group into a final machine-process group and a final machine-part group. The proposed algorithm was tested on well-known machine-part grouping problems with alternative process plans. The results of this computational study demonstrate the superiority of the proposed algorithm. The proposed algorithm can be easily applied to the group formation problem compared to other meta-heuristic based algorithms. In addition, it can be used to solve large-scale group formation problems.

SOM 이용한 각성수준의 자동인식 (Automatic Recognition in the Level of Arousal using SOM)

  • 정찬순;함준석;고일주
    • 감성과학
    • /
    • 제14권2호
    • /
    • pp.197-206
    • /
    • 2011
  • 본 논문에서는 신경망 SOM학습을 이용하여 피험자의 각성수준을 높은각성과 낮은각성으로 자동인식하는 것을 제안한다. 각성수준의 자동인식 단계는 세 단계로 구성된다 첫 번째는 ECG 측정 및 분석단계로 슈팅게임을 플레이하는 피험자를 ECG로 측정하고, SOM 학습을 하기 위해 특징을 추출한다. 두 번째는 SOM 학습 단계로 특징이 추출된 입력벡터들을 학습한다. 마지막으로 각성인식 단계는 SOM 학습이 완료된 후에 새로운 입력벡터가 들어왔을 때, 피험자의 각성수준을 인식한다. 실험결과는 각성수준의 SOM 학습결과와 새로운 입력벡터가 들어왔을 때 각성수준의 인식결과, 그리고 각성수준을 수치와 그래프로 보여준다. 마지막으로 SOM의 평가는 기존연구의 감성평가 결과와 SOM의 자동인식 결과를 순차적으로 비교하여 평균 86%로 분석되었다. 본 연구를 통해서 SOM을 이용하여 피험자마다 다른 각성수준을 자동인식 할 수 있었다.

  • PDF

자기 조직화 신경망(SOM)을 이용한 협력적 여과 기법의 웹 개인화 시스템에 대한 연구 (Collaborative Filtering System using Self-Organizing Map for Web Personalization)

  • 강부식
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.117-135
    • /
    • 2003
  • 개인화 된 정보를 제공하기 위한 협력 여과 기법에 대한 많은 연구가 이루어지고 있는데, 유사 사용자들을 찾는 과정에서 상관계수와 같은 유사성 척도를 이용하여 모든 사용자와의 유사성을 계산하는 과정을 거친다. 이때 사용자 수가 많아지게 되면, 계산의 복잡도가 지수적으로 증가하게 되는 규모의 문제가 발생한다. 본 연구는 협력 여과 기법에서 주로 사용하는 유사성 척도가 사용자 집단이 커짐에 따라 계산의 복잡도가 지수적으로 증가하는 문제를 해결하기 위한 방안을 제시하는 것이 주목적이다. 규모의 문제를 해결하기 위해 클러스터링 모델 기반 접근 방식을 사용하고 아이템의 선호도 계산을 위해 RPM(Recency, Frequency, Momentary) 기준의 사용을 제안한다. 먼저 SOM을 이용하여 전체 사용자를 사용자 집단으로 클러스터링하고 사용자 집단별로 RFM 기준에 의해 아이템의 점수를 계산하여 선호도가 높은 순으로 정렬하여 저장한다. 사용자가 로그인하면 학습된 SOM을 이용하여 대상 사용자 집단을 선정하고 미리 저장된 추천 아이템을 추천한다. 추천결과에 대해 사용자가 평가하면 그 결과를 이용하여 현 시스템의 개정 여부를 결정한다. 제안한 방안에 대해 MovieLens 데이터 셋에 적용하여 실험한 결과 기존의 협력적 여과 기법에 비해 추천 성능이 비교적 우수하면서도 추천 시스템 운용시의 계산 복잡도를 일정하게 유지시킬 수 있음을 보였다.

  • PDF

하이브리드 SOM을 이용한 효율적인 지식 베이스 관리 (An Efficient Knowledge Base Management Using Hybrid SOM)

  • 윤경배;최준혁;왕창종
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.635-642
    • /
    • 2002
  • 정보 기술 분야의 지능화 요구는 매우 빠르게 증가하고 있다. 특히 대량의 데이터로부터 지식을 찾아내어 최적의 의사결정을 해야하는 KDD(Knowledge Discovery in Database)분야에서는 그 요구가 더욱 더 크게 된다. 지능화된 의사결정을 위해서는 대용량 지식 베이스(Knowledge Base)의 효율적인 관리가 무엇보다도 중요하다. 본 논문에서는 이러한 지식 베이스로부터 의사결정 관리에 필요한 지식을 얻기 위해 효율적으로 지식 베이스를 검색하고 갱신하는 관리 방법을 위해 자율학습 신경망인 자기조직화 지도에 확률적 분포 이론을 결합한 하이브리드(Hybrid) SOM을 제안한다. 제안 방법을 이용한 효율적 지식 베이스의 관리를 시뮬레이션 실험을 통하여 수행하였다. 실험을 통해 본 논문에서 제안하는 Hybrid SOM이 지식 베이스 관리에 효율적인 성능을 나타냄이 증명되었다.

영상 감시시스템을 위한 SOM 기반 실시간 변화 감지 기법 (Real-Time Change Detection Architecture Based on SOM for Video Surveillance Systems)

  • 김종원;조정호
    • 한국정보기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.109-117
    • /
    • 2019
  • 현대 사회는 불특정 다수를 대상으로 자행되는 각종 사고와 범죄 위협으로 인하여 사회 전반에 걸쳐 개인의 보안 의식이 증가되며 다양한 감시 기법이 활발히 연구되고 있으나, 여전히 단순 부주의 또는 오작동으로 인한 강인성 저하가 발생하여 보다 높은 신뢰성을 갖는 감시 기법이 요구된다. 이에, 본 논문에서는 다양한 환경 및 동·정적 변화 감지에서의 낮은 강인성을 보완하고 비용 효율성 문제를 해결하기 위한 실시간 변화감지 기법을 제안한다. 변화 감지 구현을 위해 데이터 군집화 기법으로 응용되고 있는 자기 조직화 신경망을 활용하였으며, 실내 사무실 환경에서의 모의실험을 통해 기존 영상 감시 시스템에서 응용되는 감지 기법 대비 뛰어난 잡음 강인성과 이상 감지 판단의 우수성을 확인할 수 있었다.