• Title/Summary/Keyword: 자기회귀 이동평균

Search Result 54, Processing Time 0.019 seconds

Estimation of Layered Periodic Autoregressive Moving Average Models (계층형 주기적 자기회귀 이동평균 모형의 추정)

  • Lee, Sung-Duck;Kim, Jung-Gun;Kim, Sun-Woo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.507-516
    • /
    • 2012
  • We study time series models for seasonal time series data with a covariance structure that depends on time and the periodic autocorrelation at various lags $k$. In this paper, we introduce an ARMA model with periodically varying coefficients(PARMA) and analyze Arosa ozone data with a periodic correlation in the practical case study. Finally, we use a PARMA model and a seasonal ARIMA model for data analysis and show the performance of a PARMA model with a comparison to the SARIMA model.

Comparison of the covariance matrix for general linear model (일반 선형 모형에 대한 공분산 행렬의 비교)

  • Nam, Sang Ah;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.103-117
    • /
    • 2017
  • In longitudinal data analysis, the serial correlation of repeated outcomes must be taken into account using covariance matrix. Modeling of the covariance matrix is important to estimate the effect of covariates properly. However, It is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcome the restrictions, several Cholesky decomposition approaches for the covariance matrix were proposed: modified autoregressive (AR), moving average (MA), ARMA Cholesky decompositions. In this paper we review them and compare the performance of the approaches using simulation studies.

Predicting ozone warning days based on an optimal time series model (최적 시계열 모형에 기초한 오존주의보 날짜 예측)

  • Park, Cheol-Yong;Kim, Hyun-Il
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.293-299
    • /
    • 2009
  • In this article, we consider linear models such as regression, ARIMA (autoregressive integrated moving average), and regression+ARIMA (regression with ARIMA errors) for predicting hourly ozone concentration level in two areas of Daegu. Based on RASE(root average squared error), it is shown that the ARIMA is the best model in one area and that the regression+ARIMA model is the best in the other area. We further analyze the residuals from the optimal models, so that we might predict the ozone warning days where at least one of the hourly ozone concentration levels is over 120 ppb. Based on the training data in the years from 2000 to 2003, it is found that 35 ppb is a good cutoff value of residulas for predicting the ozone warning days. In on area of Daegu, our method predicts correctly one of two ozone warning days of 2004 as well as all of the remaining 364 non-warning days. In the other area, our methods predicts correctly all of one ozone warning days and 365 non-warning days of 2004.

  • PDF

Residual-based copula parameter estimation (잔차를 이용한 코플라 모수 추정)

  • Na, Okyoung;Kwon, Sunghoon
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.267-277
    • /
    • 2016
  • This paper considers we consider the estimation of copula parameters based on residuals in stochastic regression models. We prove that a semiparametric estimator using residual empirical distributions is consistent under some conditions and apply the results to the copula-ARMA model. We provide simulation results for illustration.

A study on prediction for attendances of Korean probaseball games using covariates (공변량을 이용한 한국프로야구 관중 수 예측에 대한 고찰)

  • Han, Ga-Hee;Chung, Jigyu;Yoo, Jae Keun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1481-1489
    • /
    • 2014
  • For predicting yearly total attendances in Korean probaseball games, ARIMA models have been widely adopted so far. In this paper, we discuss two other ways of ARIMAX and growth curves with an exogenous variable to predict the attendances. By using the exogenous variable, it turns out that the prediction has been improved compared to ARIMA. It is concluded that various statistical methods must be considered for better prediction, and its results can be applied to predict the attendances of other pro sports.

Efficient Estimation of Regression Coefficients in Regression Model with Moving Average Process (오차항이 이동평균과정을 따르는 회귀모형에서 회귀계수의 효율적 추정에 관한 연구)

  • 송석현;이종협;김기환
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.1
    • /
    • pp.109-124
    • /
    • 1999
  • 일반적으로 오차항이 자기상관되어 있는 선형회귀 모형에서는 회귀계수에 대한 보통최소제곱추정량이 효율적이지 못 하다고 알려져 있다. 그러나 이러한 일반화선형회귀모형에서 독립변수의 형태에 따라서는 OLSE의 사용 가능성을 제시하는 모형이 있다. 본 연구에서는 오차항이 일차 이동평균 과정을 따르는 선형회귀모형에서 여러 추정량들 (GLSE, APX, MAPX)에 대한 OLSE의 상대효율함수를 유도하고 비교 분석하고자 한다. 특히 소표본에서 정확한 상대효율값을 구하여 OLSE의 효율성이 크게 떨어지지 않거나 효율성이 나은 회귀모형들을 제시한다.

  • PDF

주가의 장기적 기억, 자기회귀 분수적불 이동평균 과정과 주가형성

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.9 no.1
    • /
    • pp.95-118
    • /
    • 2003
  • 한 시계열의 자기상관계수의 절대값을 시차를 무한대로 접근시켜 가면서 각 시차에 대하여 구하고 이 절대값을 모두 더한 값이 무한일 때 이 시계열은 장기기억을 가진다. 이로 인하여 장기기억 모수를 추정하는데에는 자기상관을 기본으로 한다. 표본의 자기상관과 이론적 자기상관 사이의 거리를 최소하여 추정통계량을 유도하고 있는 것이 일반적이다. 이 경우에는 정상적 과정에 한하여 적용이 가능하다. 시계열은 어느 시계열이던지 간에 이 시계열에 적합한 모형이 존재할 것이고 이 모형을 시계열에 적용하면 잔차 시계열을 얻을 수 있다. 원래 시계열의 이론적 상관 대신 원래 시계열의 잔차 시계열의 자기상관과 표본의 자기상관 사이의 거리를 최소하여 추정통계량을 얻으면 통계량의 계산이 편하고 이 추정량은 정상적 시계열과 비정상적 시계열에 다같이 적용할 수 있다. 본 논문에서는 잔차의 자기상관을 이용하여 자기회귀 분수적분 이동평균 과정의 모수 추정량을 도출한다. 그리고 이 추정 통계량에 입각하여 주가의 형성과정을 살펴보고 장기기억이 옵션가격과 포트폴리오 구성에 미치는 영향을 밝힌다.

  • PDF

Estimation Of System Parameters With Arma Model (자기회귀-이중평균모델에 의한 시스템 파라미터 추정)

  • Hwang, Won-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.76-83
    • /
    • 1991
  • 자기회귀-이동평균모델에 의하여 시스템의 파라미터를 추정할 수 있는 벡터채널 원형 격자 필터(vector channel circular lattice filter)의 알고리즘을 제시하였다. 이 알고리즘은 스칼라 연산만으로 이루어져 계산이 간단한 장점이 있다. 3자유도 시스템의 시뮬레이션 결과로부터 격자 필터의 성능을 검증하였으며, 1자유도 팔의 고유진동수와 감쇄비를 추정하였다.

  • PDF

Models for forecasting food poisoning occurrences (식중독 발생 예측모형)

  • Yeo, In-Kwon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1117-1125
    • /
    • 2012
  • The occurrence of food poisoning is usually modeled by meteorological variables like the temperature and the humidity. In this paper, we investigate the relationship between food poisoning occurrence and climate variables in Korea and compare Poisson regression and autoregressive moving average model to select the forecast model. We confirm that lagged climate variables affect the food poisoning occurrences. However, it turns out that, from the viewpoint of the prediction, the number of previous occurrences is more influential to the current occurrence than meteorological variables and Poisson regression model is less reliable.