• Title/Summary/Keyword: 자기탐사

Search Result 219, Processing Time 0.033 seconds

Effect of Cooling-rate Dependence on the Magnitude of Thermoremanent Magnetization (냉각률이 자화에 미치는 영향)

  • Yu, Yong-Jae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.43-45
    • /
    • 2010
  • Acquisition of thermoremanent magnetization follows a Boltzman statistics, as such long reaction time in a slowly cooled environment allows more chance to align individual magnetic particles parallel to the external magnetic field. Hence it has been proposed that the slowly cooled rocks often acquire stronger magnetization than the rapidly cooled ones. Such a proposition has been experimentally validated to be true for the fine-grained magnetite- or titanomagnetite bearing basaltic rocks collected from the mid-ocean ridges. However, the effect of cooling-rate on the remanence intensity appears to be insignificant for nominal grain ranges.

  • PDF

A Comparative Study of 3D MT Modeling Methods (3차원 MT 모델링 기법의 비교 분석)

  • Han, Nu-Ree;Nam, Myung-Jin;Kim, Hee-Joon;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.154-160
    • /
    • 2007
  • This paper compares the characteristics of three different algorithms for three-dimensional (3D) magnetotelluric (MT) modeling. These methods are developed by Mackie et al. (1994), Sasaki (1999) and Nam et al. (2007). The first and second methods are based on the finite difference method (FDM), while the last one the finite-element method (FEM). MT responses, apparent resistivities and phases, for a COMMEMI 3D-2 model show a good agreement with integral equation solutions and only minor discrepancies are found over the anomalous bodies in the 3D model. The computation time of the two methods based on FDM is short and the static divergence correction contributes to speed up. The FEM modeling scheme is accurate but slow.

고에너지 입자 검출기 STEIN의 아날로그회로 설계

  • Kim, Jin-Gyu;Nam, Ji-Seon;Seo, Yong-Myeong;Jeon, Sang-Min;Mcbride, Steve;Larson, Davin;Jin, Ho;Seon, Jong-Ho;Lee, Dong-Hun;Lin, Robert P.;Harvey, Peter
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.37.5-38
    • /
    • 2010
  • 경희대학교 우주탐사학과에서는 우주공간 탐사를 위해 Trio(TRiplet Ionospheric Observatory)-CINEMA(Cubesat for Ions, Neutrals, Electrons and MAgnetic fields)로 명명된 초소형 위성을 개발하고 있다. 과학임무는 지구 저궤도에서 고에너지 입자를 관측하는 것이며, 이를 위해 고에너지 (2~300keV) 입자 검출기와 자기장 측정기가 탑재된다. 저에너지 입자 검출기 시스템인 STEIN(SupraThermal Electrons, Ions, Neutrals)은 $1\times4$ Array의 개선된 실리콘 검출기와 이온, 전자, 중성입자를 분리할 수 있는 정전장 편향기, 그리고 신호를 처리하는 전자회로로 구성되어있다. 설계된 전자회로는 매우 작은 검출기 기판, 아날로그 기판과 디지털 기판으로 이루어져 있고, 475mW 이하의 저 전력으로 동작한다. 또한 2~100keV의 에너지를 1keV이하의 해상도로 30,000event/sec/pixel 까지 관측 할 수 있도록 회로를 설계하였다. 센서로 들어온 입자로 인해 발생한 펄스의 신호는 4개의 아날로그 회로가 담당하게 되는데, Folded cascode amplifier를 배치하여 증폭률을 높인 Charge sensitive amplifier를 통해 신호를 증폭하고, $2{\mu}s$ unipolar gaussian shaping amplifier를 통해 읽기 쉽게 처리된 신호를 상한파고선별기와 하한파고 선별기를 통해 유효 값 여부를 판단하고, 피크 검출기를 통해 피크의 타이밍을 측정한 뒤 신호를 아날로그-디지털 변환 회로를 통하여 8bit의 값으로 나타내어, 입자들의 Spectrum을 측정하게 된다. 크기와 소비전력이 적음에도 검출성능이 우수하기 때문에 이 시스템은 향후 우주탐사 시스템에 있어 매우 중요한 역할을 수행 할 것으로 생각한다.

  • PDF

Project of Dam Safety reinforcement on Gampo Dam (감포댐 안전성강화 사업)

  • Cheon, Geun Ho;Han, Yong Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.214-214
    • /
    • 2022
  • 감포댐은 2006년 준공하여 각종 시설 및 설비의 노후화가 진행중에 있으며, 최근 감포댐 인근 지역에서 발생한 경주지진(규모 5.8) 및 포항지진(규모 5.4)이 발생하여 지진시 시설물의 안전성에 대해 중요성이 대두되고 있었다. 이에 감포댐 안전성강화 사업을 추진하게 되었고, 주요 사업내용은 취수탑 관리교 내진보강, 댐체 심벽보강을 통한 댐체 안전성확보, 비상방류시설 개선이다. 취수탑 관리교는 교각단면의 변위연성도 및 교량받침에 의한 구조물 안전성 평가를 시행하였고, 단면강도는 모멘트-곡률해석법에서 탄성영역의 단면강도 대비 탄성지진력을 비교하여 안전성을 검토하였다. 검토결과 교량받침의 내진성능은 부족한 것으로 검토되어 유량제어형 멀티펌프와 안전잭을 이용한 변위제어 방식의 교량동시 인상공법이 가능하고 인상정밀도 ±0.5mm이내의 성능을 가진 교량인상공법 적용하여 보강을 하는 것으로 계획하였다. 댐체 심벽보강을 위해 먼저 전기비저항탐사를 수행하여 전기비저항대를 탐사하여 심벽부에서 포화대가 형성된 부위를 조사하였다. 그리고 댐 상·하류에 전극을 설치하고 전류를 발생시켜 측정 지점별 자기장을 측정을 통하여 댐체내 침투에 따른 유로 형성여부 파악을 위한 전자기장탐사를 시행하였다. 마지막으로 심벽 시추조사를 시행하여 공내수를 조사하였다. 조사결과 포화대의 위치 및 이상대가 다양한 것으로 나타났으며, 이는 불특정 지점에 연약대가 존재한다 판단하여 심벽부 보강계획을 전반적으로 적용하는 것으로 결정하였다. 비상방류시설은 최근 15년 실측자료의 홍수기(6~9월) 평균유입량을 적용하여 검토하였으며 검토결과 배제대상 높이 75%까지는 3.7일, 완전배제까지는 11.2일이 걸려 댐설계기준을 충족하는 것으로 검토되다. 다만 감포댐 비상방류시설이 하천제방과 직각방향으로 형성되어 있고, 하천의 폭이 좁아 과거 방류시에도 제방을 월류하는 것으로 조사되어 하천의 세굴을 방지하고 제방 안전성을 확보하기 위하여 비상방류시설에 감세공을 설치하고, 제방에 디플렉터 옹벽을 설치하는 것으로 계획하였다. 감세공은 2번에 걸친 감세효과로 방류시 하류바닥 및 옹벽 보호 효과가 큰 미국 USBR의 TypeVI를 적용하였으며, Flow-3D 모델링을 통하여 제방에 월류가 발생하지 않는 최적의 대안 옹벽규모를 산정하였다.

  • PDF

A study on the characteristics of difference arrow using three-dimensional MT(Magneto-Telluric) modeling (3차원 전도체의 공간적 위치 및 크기에 따른 차이 지시자의 특성 연구)

  • Yang, Jun-Mo;Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.305-319
    • /
    • 2002
  • The three-dimensional MT(Magneto-Telluric) modeling is performed to examine the validity of difference arrow of GDS(Geomagnetic Depth Sounding) survey, In this paper, we investigate the validity of the difference arrow on three configurations of conductors; which is located 1) at surface, 2) at the deep part and 3) vertically extended f개m surface to the deep part, respectively, For conductors located at surface, the validity of difference arrows is certified in our numerical model when long periods over 40 minutes are used or the distance between sea and conductor is over 150 km. However, for conductors located at the deep part, the validity of difference arrow is dependent on the size of conductors. Further, if the size of conductor is adequately larger than that of our model, we recognize the possibility that the mutual coupling of them influences up to longer periods, Moreover, in case of conductors which is vertically extended from surface to the deer part, the mutual coupling of them is reinforced for all periods, especially for longer periods, so that the validity of difference arrow is considerably in doubt. Therefore, to remove the known conductor effect such as the sea effect from the observed induction arrow, the mutual coupling between them must be examined. The difference arrow that certifies the validity in this way can only provide the Subsurface information based on physical supports.

  • PDF

Analysis of the Geological Structure of the Hwasan Caldera Using Potential Data (포텐셜 자료해석을 통한 화산칼데라 구조 해석)

  • Park, Gye-Soon;Yoo, Hee-Young;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo;Eom, Joo-Young;Kim, Dong-O;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • A geophysical mapping was performed for Hwasan caldera which is located in Euisung Sub-basin of the southeastern part of the Korean Peninsula. In order to overcome the limitation of the previous studies, remote sensing technic was used and dense potential data were obtained and analyzed. First, we analyzed geological lineament for target area using geological map, digital elevation model (DEM) data and satellite imagery. The results were greatly consistent with the previous studies, and showed that N-S and NW-SE direction are the most dominant one in target area. Second, based on the lineament analysis, highly dense gravity data were acquired in Euisung Sub-basin and an integrated interpretation considering air-born magnetic data was made to investigate the regional structure of the target area. The results of power spectrum analysis for the acquired potential data revealed that the subsurface of Euisung Sub-basin have two density discontinuities at about 1 km and 3-5 km depth. A 1 km depth discontinuity is thought as the depth of pyroclastic sedimentary rocks or igneous rocks which were intruded at the ring vent of Hwasan caldera, while a 3-5 km depth discontinuity seems to be associated with the depth of the basin basement. In addition, three-dimensional gravity inversion for the total area of Euisung Sub-basin was carried out, and the inversion results indicated two followings; 1) Cretaceous Palgongsan granite and Bulguksa intrusion rocks, which are located in southeastern part and northeastern part of Euisung Sub-basin, show two major low density anomalies, 2) pyroclastic rocks around Hwasan caldera also have lower density when compared with those of neighborhood regions and are extended to 1.5 km depth. However, a poor vertical resolution of potential survey makes it difficult to accurately delineate the detailed structure caldera which has a vertically developed characteristic in general. To overcome this limitation, integrated analysis was carried out using the magnetotelluric data on the corresponding area with potential data and we could obtain more reasonable geologic structure.

Geophysical Study on the Geoelectrical Structure of the Hwasan Caldera in the Euisung Sub-basin Using Magnetotelluric Survey (자기지전류 탐사를 이용한 의성소분지 화산 칼데라의 지구물리학적 연구)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Cho, In-Ky;Lee, Heui-Soon;Park, Gye-Soon;Um, Joo-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.99-108
    • /
    • 2008
  • To extend our detailed knowledge for the Hwasan caldera, we carried out magnetotelluric (MT) survey, which is pretty sensitive to electrical property variation in both horizontal and vertical direction of subsurface, across the Hwasan caldera with the direction of EW. The 2-D inversion results of observed MT data lead to following conclusions. Firstly, the depth of the basin basement inferred by the MT inversion results matches well with that suggested by previous potential studies, but the basement resistivity seems fairly low when compared to that of general case. This feature might be related with the large-scaled, highly conductive layer beneath the Euisung Sub-basin suggested by the previous MT study. Secondly, the high resistivity zones reaching to 4000 $\Omega{\cdot}m$ are imaged around two external ring fault boundaries. These zones are thought of as the response of the rhyolitic dykes intruding along the ring fault, and in the previous gravity data correspond to relatively high density anomalies. Thirdly, low resistivity zone reaching to 200 $\Omega{\cdot}m$ is detected around a depth of 1km beneath the central part of the caldera, which has not been yet reported in korean geophysical literatures. If we take account of the evolution model of the Hwasan caldera, this zone is regarded as the past sedimentary layer that subsided during the period of forming external ring fault system. In addition, the relatively low density anomaly observed in the central part of the caldera may be attributed to this sedimentary layer.

Investigation of Subsurface Structure of Cheju Island by Gravity and Magnetic Methods (중력 및 자력 탐사에 의한 제주도 지질구조 연구)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Jung, Gwi-Geum;Chung, Seung-Whan
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.395-404
    • /
    • 1995
  • The geologic structure of the Cheju volcanic island has been investigated by analyzing the gravity and magnetic data. Bouguer gravity map shows apparent circular low anomalies at the central volacanic edifice, and the maximum difference of the anomaly values on the island appears to be 30 mgal. The subsurface structure of the island is modeled by three-dimensional depth inversion of gravity data by assuming the model consists of a stacked grid of rectangular prisms of volcanic rocks bounded below by basement rocks. The gravity modeling reveals that the interface between upper volvanic rocks and underlying basement warps downward under Mt. Halla with the maximum depth of 5 km. Magnetic data involve aeromagnetic and surface magnetic survey data. Both magnetic anomaly maps show characteristic features which resemble the typical pattern of total magnetic anomalies caused by a magnetic body magnetized in the direction of the geomagnetic field in the middle latitude region, though details of two maps are somewhat different. The reduced-to-pole magnetic anomaly maps reveal that main magnetic sources in the island are rift zones and the Halla volcanic edifice. The apparent magnetic boundaries inferred by the method of Cordell and Grauch (1985) are relatively well matched with known geologic boundaries such as that of Pyosunri basalt and Sihungri basalt which form the latest erupted masses. Inversion of aeromagnetic data was conducted with two variables: depth and susceptibility. The inversion results show high susceptibility bodies in rift zones along the long axis of the island, and at the central volcano. Depths to the basement are 1.5~3 km under the major axis, 1~1.5 km under the lava plateau and culminates at about 5 km under Mt. Halla. The prominent anomalies showing N-S trending appear in the eastern part of both gravity and magnetic maps. It is speculated that this trend may be associated with an undefined fault developed across the rift zones.

  • PDF

The Study of Hydrothermal Vent and Ocean Crustal Structure of Northeastern Lau Basin Using Deep-tow and Surface-tow Magnetic Data (심해 및 표층 지자기 자료를 이용한 라우분지 북동부의 열수 분출구 및 해저 지각 구조 연구)

  • Kwak, Joon-Young;Won, Joong-Sun;Park, Chan-Hong;Kim, Chang-Hwan;Ko, Young-Tak
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Fonualei Rift and Spreading Center(FRSC) and Mangatolu Triple function(MTJ) caldera are located in northeastern part of Lau basin which is the active back-arc basin. Deep-tow and surface-tow magnetic surveys are carried out in FRSC. In deep-tow magnetic survey, to compensate for influence of uneven distance between bathymetry and sensor height, magnetic anomaly is continued upward to a level plane by using the Guspi method. We calculate crustal magnetization using Parker and Huestis's inversion algorithm, and try to find the hydrothermal vent and understand the structure of ocean floor crust. The result of deep-tow magnetic survey at FRSC showed that Central Anomaly Magnetization High(CAMH) recorded the max value of 4.5 A/m which is associated with active ridge. The direction of SSW-NNE corresponds with the direction of the principal spreading ridge in Lau basin. The low crustal magnetizaton$(174^{\circ}35.1'W,\;16^{\circ}38.4'S)$ of -4.0 A/m is supposed to correlate with submarine hydrothermal vent. Surface-tow magnetic data were collected in MTJ caldera$(174^{\circ}00'W,\;15^{\circ}20'S)$. The prevailing SSW-NNE direction of collapsing walls and the presence of CAMH at the center of caldera strongly indicate the existence of active spreading ridge in ancient times.

Interpretation of the Magnetic Logs for a Finite Line of Magnetic Dipoles Model (유한 선형 자기쌍극자 모델에 대한 검층자료의 해석)

  • Kim, Jin Hu
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • Interpretations of 3-component magnetic logging data obtained for a reinforced bar as a model of the line of the magnetic dipoles are conducted using a least squared inversion technique. The length of the bar is 1.12 m, sampling interval is 0.05 m, the distance between the bar and the borehole is 0.3 m, and the top of the bar is fixed at 0 m of depth. The bar is set to be approximately vertical. Magnetic anomalies smoothed with FFT are used as input data for the inversion. For the interpretation of magnetic logging data the depth to the top, the length, the magnetic moment per unit length, the direction of the magnetization (declination and inclination), and the bearing and plunge of the line of magnetic dipoles are left as unknown parameters. The comparison of the results obtained from the individual inversion of the horizontal component or the vertical component of the magnetic anomalies, and those from the simultaneous inversion of horizontal and vertical component of the magnetic anomalies shows that there exist some disagreements between each inversion result. The depth to the bottom of the bar, which is actually 1.12 m, is estimated as 1.18 m, and the inclination of the magnetization is estimated as -76°by simultaneous inversion. The negative value of the inclination indicates that the strength of the remnant magnetization is much greater than that of the induced magnetization, so that the direction of the resultant magnetization points to the top of the bar.

  • PDF