• Title/Summary/Keyword: 자기조직화 특징 지도

Search Result 39, Processing Time 0.022 seconds

A Study on Face Recognition Using Diretional Face Shape and SOFM (방향성 얼굴형상과 SOFM을 이용한 얼굴 인식에 관한 연구)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.109-116
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation for the identification of a face shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the face area through pre-processing using a face shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a face area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the face shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.

A Fuzzy Neural Network Model Solving the Underutilization Problem (Underutilization 문제를 해결한 퍼지 신경회로망 모델)

  • 김용수;함창현;백용선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.354-358
    • /
    • 2001
  • This paper presents a fuzzy neural network model which solves the underutilization problem. This fuzzy neural network has both stability and flexibility because it uses the control structure similar to AHT(Adaptive Resonance Theory)-l neural network. And this fuzzy nenral network does not need to initialize weights and is less sensitive to noise than ART-l neural network is. The learning rule of this fuzzy neural network is the modified and fuzzified version of Kohonen learning rule and is based on the fuzzification of leaky competitive leaming and the fuzzification of conditional probability. The similarity measure of vigilance test, which is performed after selecting a winner among output neurons, is the relative distance. This relative distance considers Euclidean distance and the relative location between a datum and the prototypes of clusters. To compare the performance of the proposed fuzzy neural network with that of Kohonen Self-Organizing Feature Map the IRIS data and Gaussian-distributed data are used.

  • PDF

Speech Visualization of Korean Vowels Based on the Distances Among Acoustic Features (음성특징의 거리 개념에 기반한 한국어 모음 음성의 시각화)

  • Pok, Gouchol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.512-520
    • /
    • 2019
  • It is quite useful to represent speeches visually for learners who study foreign languages as well as the hearing impaired who cannot directly hear speeches, and a number of researches have been presented in the literature. They remain, however, at the level of representing the characteristics of speeches using colors or showing the changing shape of lips and mouth using the animation-based representation. As a result of such approaches, those methods cannot tell the users how far their pronunciations are away from the standard ones, and moreover they make it technically difficult to develop such a system in which users can correct their pronunciation in an interactive manner. In order to address these kind of drawbacks, this paper proposes a speech visualization model based on the relative distance between the user's speech and the standard one, furthermore suggests actual implementation directions by applying the proposed model to the visualization of Korean vowels. The method extract three formants F1, F2, and F3 from speech signals and feed them into the Kohonen's SOM to map the results into 2-D screen and represent each speech as a pint on the screen. We have presented a real system implemented using the open source formant analysis software on the speech of a Korean instructor and several foreign students studying Korean language, in which the user interface was built using the Javascript for the screen display.

A Sequential Pattern Analysis for Dynamic Discovery of Customers' Preference (고객의 동적 선호 탐색을 위한 순차패턴 분석: (주)더페이스샵 사례)

  • Song, Ki-Ryong;Noh, Soeng-Ho;Lee, Jae-Kwang;Choi, Il-Young;Kim, Jae-Kyeong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.195-209
    • /
    • 2008
  • Customers' needs change every moment. Profitability of stores can't be increased anymore with an existing standardized chain store management. Accordingly, a personalized store management tool needs through prediction of customers' preference. In this study, we propose a recommending procedure using dynamic customers' preference by analyzing the transaction database. We utilize self-organizing map algorithm and association rule mining which are applied to cluster the chain stores and explore purchase sequence of customers. We demonstrate that the proposed methodology makes an effect on recommendation of products in the market which is characterized by a fast fashion and a short product life cycle.

Applying of SOM for Automatic Recognition of Tension and Relaxation (긴장과 이완상태의 자동인식을 위한 SOM의 적용)

  • Jeong, Chan-Soon;Ham, Jun-Seok;Ko, Il-Ju;Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.65-74
    • /
    • 2010
  • We propose a system that automatically recognizes the tense or relaxed condition of scrolling-shooting game subject that plays. Existing study compares the changed values of source of stimulation to the player by suggesting the source, and thus involves limitation in automatic classification. This study applies SOM of unsupervised learning for automatic classification and recognition of player's condition change. Application of SOM for automatic recognition of tense and relaxed condition is composed of two steps. First, ECG measurement and analysis, is to extract characteristic vector through HRV analysis by measuring ECG after having the player play the game. Secondly, SOM learning and recognition, is to classify and recognize the tense and relaxed conditions of player through SOM learning of the input vectors of heart beat signals that the characteristic extracted. Experiment results are divided into three groups. The first is HRV frequency change and the second the SOM learning results of heart beat signal. The third is the analysis of match rate to identify SOM learning performance. As a result of matching the LF/HF ratio of HRV frequency analysis to the distance of winner neuron of SOM based on 1.5, a match rate of 72% performance in average was shown.

Predicting Power Generation Patterns Using the Wind Power Data (풍력 데이터를 이용한 발전 패턴 예측)

  • Suh, Dong-Hyok;Kim, Kyu-Ik;Kim, Kwang-Deuk;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.245-253
    • /
    • 2011
  • Due to the imprudent spending of the fossil fuels, the environment was contaminated seriously and the exhaustion problems of the fossil fuels loomed large. Therefore people become taking a great interest in alternative energy resources which can solve problems of fossil fuels. The wind power energy is one of the most interested energy in the new and renewable energy. However, the plants of wind power energy and the traditional power plants should be balanced between the power generation and the power consumption. Therefore, we need analysis and prediction to generate power efficiently using wind energy. In this paper, we have performed a research to predict power generation patterns using the wind power data. Prediction approaches of datamining area can be used for building a prediction model. The research steps are as follows: 1) we performed preprocessing to handle the missing values and anomalous data. And we extracted the characteristic vector data. 2) The representative patterns were found by the MIA(Mean Index Adequacy) measure and the SOM(Self-Organizing Feature Map) clustering approach using the normalized dataset. We assigned the class labels to each data. 3) We built a new predicting model about the wind power generation with classification approach. In this experiment, we built a forecasting model to predict wind power generation patterns using the decision tree.

Korean Phoneme Recognition Using Self-Organizing Feature Map (SOFM 신경회로망을 이용한 한국어 음소 인식)

  • Jeon, Yong-Koo;Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.101-112
    • /
    • 1995
  • In order to construct a feature map-based phoneme classification system for speech recognition, two procedures are usually required. One is clustering and the other is labeling. In this paper, we present a phoneme classification system based on the Kohonen's Self-Organizing Feature Map (SOFM) for clusterer and labeler. It is known that the SOFM performs self-organizing process by which optimal local topographical mapping of the signal space and yields a reasonably high accuracy in recognition tasks. Consequently, SOFM can effectively be applied to the recognition of phonemes. Besides to improve the performance of the phoneme classification system, we propose the learning algorithm combined with the classical K-mans clustering algorithm in fine-tuning stage. In order to evaluate the performance of the proposed phoneme classification algorithm, we first use totaly 43 phonemes which construct six intra-class feature maps for six different phoneme classes. From the speaker-dependent phoneme classification tests using these six feature maps, we obtain recognition rate of $87.2\%$ and confirm that the proposed algorithm is an efficient method for improvement of recognition performance and convergence speed.

  • PDF

Wetland Habitat Assessement Utilizing TDI(Trophic Diatom Index) (부착돌말영양지수(TDI)를 활용한 습지환경 평가)

  • Kim, Seong-Ki;Choi, Jong-Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.525-538
    • /
    • 2019
  • The purpose of this study was to analyze the habitat status and species diversity of benthic diatoms and estimate the applicability of TDI (Trophic Diatom Index) to obtain the basic data for the identification and management of created wetlands in the Nakdong River. We observed a total of 38 families and 173 species of benthic diatom during the survey period, and spring and autumn showed a similar number of species of 156 and 154, respectively. The result of the SOM (Self-Organizing Map) analysis showed that the distribution of benthic diatom was sensitive to environmental factors such as nutrient concentration and rainfall in each wetland. The cluster 1 was characterized by the survey sites of autumn mostly and consisted of points of high TDI, although the nutrients such as total phosphorus and total nitrogen were low, and the species number and abundance of diatoms were low. Conversely, cluster 4 was characterized by the survey sites of spring mostly and consisted of points of low TDI, even though total nitrogen was high. Considering that most of the created wetlands had the reduced inflow and outflow, the increased flow rate in the summer lowers nutrient values in autumn, and the species number and abundance of benthic diatom decreases due to the increase of turbidity, which reduces the light penetrations to the substrates. On the contrary, the TDI value is low in spring because the low water level causes insufficient substrate surface to the benthic diatoms, and it is too early for the establishment and development of saprophilous species. Although various studies have used TDI as an indicator for evaluating the habitat environment and water quality, it is not a good evaluation indicator in this study since the nutrient concentration in the wetlands mostly high as they have a low flow rate and are close to the stagnant area. Nevertheless, additional periodic surveys that comprehensively reflect the fact that the summer rainfall and inflow/outflow regulating function might affect the species diversity and distribution of benthic diatoms are necessary.