Journal of the Korean Society for Precision Engineering
/
v.12
no.7
/
pp.32-45
/
1995
In this paper, we present a new method to tool path planning problem for rough cut of pocket milling operations. The key idea is to formulate the tool path problem into a TSP (Travelling Salesman Problem) so that the powerful neural network approach can be effectively applied. Specifically, our method is composed of three procedures: a) discretization of the pocket area into a finite number of tool points, b) neural network approach (called SOM-Self Organizing Map) for path finding, and c) postprocessing for path smoothing and feedrate adjustment. By the neural network procedure, an efficient tool path (in the sense of path length and tool retraction) can be robustly obtained for any arbitrary shaped pockets with many islands. In the postprocessing, a) the detailed shape of the path is fine tuned by eliminating sharp corners of the path segments, and b) any cross-overs between the path segments and islands. With the determined tool path, the feedrate adjustment is finally performed for legitimate motion without requiring excessive cutting forces. The validity and powerfulness of the algorithm is demonstrated through various computer simulations and real machining.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.3
/
pp.525-532
/
2021
In the ocean, it is difficult to separate the effects of one cause due to the multiple causes, but the self-organizing map can be analyzed by adding other factors to the cluster result. Therefore, in this study, the results of the clustering of sea level data were applied to sea surface temperature. Sea level data was clustered into a total of 6 nodes. The difference between sea surface temperature and sea level height has a one-month delay, which applied sea surface temperature data a month ago to the clustered results. As a result of comparing the mean of sea surface temperature of 140 to 150°E, where the sea surface temperature was variously distributed, in the case of nodes 1, 3, and 5, it was possible to find a meandering sea surface temperature distribution that is clearly distinguished from the sea level data. While nodes 2, 4 and 6, the sea surface temperature distribution was smooth. In this study, sea surface temperature data were applied to the clustered results of sea level data, but later it is necessary to apply wind or geostrophic velocity data to compare.
Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Jeong, Choen-Lee
Journal of Korea Water Resources Association
/
v.41
no.10
/
pp.995-1007
/
2008
Studies on modeling the rainfall-runoff relationship which shows nonlinear trend strongly use artificial neural networks theory not only for the prediction but also for the characteristics analysis of the data used by pattern classification. For the pattern classification, the results from Self-Organizing Map (SOM) mention that the map size and array for the SOM training have significantly influenced on the SOM performance. Since there is no deterministic method or theoretical equation to determine the number of rows and columns for the map size, hexagonal array is generally used for the map array. Therefore, this study present a determination of the optimized map structure for the rainfall-runoff analysis in Naju station considering the map size and array simultaneously which can represent the classified characterization of rainfall-runoff relationship. The result showed that the map size of 20$\times$16 hexagonal array with 8-clustered patterns was selected as an appropriate map structure for rainfall-runoff analysis in Naju station.
Journal of Institute of Control, Robotics and Systems
/
v.17
no.1
/
pp.22-30
/
2011
Plane detection is very important information for mission-critical of robot in 3D environment. A representative method of plane detection is Hough-transformation. Hough-transformation is robust to noise and makes the accurate plane detection possible. But it demands excessive memory and takes too much processing time. Iterative randomized Hough-transformation has been proposed to overcome these shortcomings. This method doesn't vote all data. It votes only one value of the randomly selected data into the Hough parameter space. This value calculated the value of the parameter of the shape that we want to extract. In Hough parameters space, it is possible to detect accurate plane through detection of repetitive maximum value. A common problem in these methods is that it requires too much computational cost and large number of memory space to find the distribution of mixed multiple planes in parameter space. In this paper, we detect multiple planes only via data sampling using Self Organizing Map method. It does not use conventional methods that include transforming to Hough parameter space, voting and repetitive plane extraction. And it improves the reliability of plane detection through division area searching and planarity evaluation. The proposed method is more accurate and faster than the conventional methods which is demonstrated the experiments in various conditions.
We accomplish clustering analyses for yeast cell cycle microarray expression data. To reflect the characteristics of a time-course data, we screen the genes using the test statistics with Fourier coefficients applying a FDR procedure. We compare the results done by model-based clustering, K-means, PAM, SOM, hierarchical Ward method and Fuzzy method with the yeast data. As the validity measure for clustering results, connectivity, Dunn index and silhouette values are computed and compared. A biological interpretation with GO analysis is also included.
In this paper, we propose a new learning algorithm, ASOFM(Adaptive Self Organizing Feature Map), to solve the defects of Kohonen's Self Organiaing Feature Map. Kohonen's algorithm is sometimes stranded on local minima for the initial weights. The proposed algorithm uses an object function which can evaluate the state of network in learning and adjusts the learning rate adaptively according to the evaluation of the object function. As a result, it is always guaranteed that the state of network is converged to the global minimum value and it has a capacity of generalized learning by adaptively. It is reduce that the learning time of our algorithm is about $30\%$ of Kohonen's.
Proceedings of the Korean Society for Bioinformatics Conference
/
2003.10a
/
pp.170-177
/
2003
Gene expression data are the quantitative measurements of expression levels and ratios of numberous genes in different situations based on microarray image analysis results. The process to draw meaningful information related to genomic diseases and various biological activities from gene expression data is known as gene expression data analysis. In this paper, we present a hierarchical clustering method of gene expression data based on self organizing map which can analyze the clustering result of gene expression data more efficiently. Using our proposed method, we could eliminate the uncertainty of cluster boundary which is the inherited disadvantage of self organizing map and use the visualization function of hierarchical clustering. And, we could process massive data using fast processing speed of self organizing map and interpret the clustering result of self organizing map more efficiently and user-friendly. To verify the efficiency of our proposed algorithm, we performed tests with following 3 data sets, animal feature data set, yeast gene expression data and leukemia gene expression data set. The result demonstrated the feasibility and utility of the proposed clustering algorithm.
The CONDENSATION (Conditional Density Propagation) algorithm has a robust tracking performance and suitability for real-time implementation. However, the CONDENSATION tracker has some difficulties with real-time implementation for multiple people tracking since it requires very complicated shape modeling and a large number of samples for precise tracking performance. Further, it shows a poor tracking performance in the case of close or partially occluded people. To overcome these difficulties, we present three improvements: First, we construct effective templates of people´s shapes using the SOM (Self-Organizing Map). Second, we take the discrete HMM (Hidden Markov Modeling) for an accurate dynamical model of the people´s shape transition. Third, we use the competition rule to separate close or partially occluded people effectively. Simulation results shows that the proposed CONDENSATION algorithm can achieve robust and real-time tracking in the image sequences of a crowd of people.
Recently human gait has been considered as a useful biometric supporting high performance human identification systems. This paper proposes a view-based pedestrian identification method using the dynamic silhouettes of a human body modeled with the Hidden Markov Model(HMM). Two types of gait models have been developed both with an endless cycle architecture: one is a discrete HMM method using a self-organizing map-based VQ codebook and the other is a continuous HMM method using feature vectors transformed into a PCA space. Experimental results showed a consistent performance trend over a range of model parameters and the recognition rate up to 88.1%. Compared with other methods, the proposed models and techniques are believed to have a sufficient potential for a successful application to gait recognition.
In this paper, we improve an image classifier algorithm based on neural network learning. It consists of two steps. The first is input pattern generation and the second, the global neural network implementation using an improved back-propagation algorithm. The feature vector for pattern recognition consists of the codebook data obtained from self-organization feature map learning. It decreases the input neuron number as well as the computational cost. The global neural network algorithm which is used in classifier inserts a control part and an address memory part to the back-propagation algorithm to control weights and unit-offsets. The simulation results show that it does not fall into the local minima and can implement easily the large-scale neural network. And it decreases largely the learning time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.