• Title/Summary/Keyword: 자기스퍼터링

Search Result 157, Processing Time 0.023 seconds

Magnetic Anisotropy Behavior in Antiparallely Coupled NiFe/Ru/NiFe Films (반자성으로 커플링된 NiFe/Ru/NiFe 박막에서의 자기이방성의 변화)

  • Song, Oh-Sung;Jung, Young-Soon;Lee, Ki-Yung
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.97-102
    • /
    • 2003
  • Synthetic ferrimagnetic layer (SyFL) with structure NiFe/Ru/NiFe which can be applied high density TMR device in free layer were prepared by an inductively coupled plasma (ICP) helicon-sputter. We proposed a model of predicting coercivity (H$\_$c/), spin-flopping field (H$\_$sf/), and saturation field (H$\_$s/) as a function of Ru thicknesses, from the equilibrium state of energies of Zeeman, exchange, and uniaxial anisotropy. We fabricated the samples of Ta(50 ${\AA}$)/NiFe(50${\AA}$)nu(4∼20${\AA}$)NiFe(30 ${\AA}$)/Ta(50${\AA}$), and measured the M-H loops with a superconduction quantum interference device (SQUID) applying the external field up to ${\pm}$ 15 kOe. The result was well agreed with the proposed model, and reveal K$\_$u = 1000 erg/㎤, J$\_$ex/ =0.7 erg/$\textrm{cm}^2$. We report that H$\_$c/ below 10 Oe is available, and R$\_$u/ thickness range should be in 4-10 ${\AA}$ for MRAM application. Our result implies that permalloy layers may lead to considerable magnetostriction effect in SyFL and intermixing in NiFe/Ru interfaces.

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

Magnetoresistance of IrMn-Based Spin Filter Specular Spin Valves (IrMn 스핀필터 스페큘라 스핀밸브의 자기저항 특성)

  • Hwang, J.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.236-239
    • /
    • 2004
  • We studied the specular spin valve (SSV) having the spin filter layer (SFL) in contact with the ultrathin free layer composed of Ta3/NiFe2/IrMn7/CoFel/(NOLl)/CoFe2/Cu1.8/CoFe( $t_{F}$)/Cu( $t_{SF}$ )/(NOL2)/Ta3.5 (in nm) by the magnetron sputtering system. For this antiferromagnetic I $r_{22}$M $n_{78}$-pinned spin filter specular spin valve (SFSSV) films, an optimal magnetoresistance (MR) ratio of 11.9% was obtained when both the free layer thickness ( $t_{F}$) and the SFL thickness ( $t_{SF}$ ) were 1.5 nm, and the MR ratio higher than 11% was maintained even when the $t_{F}$ was reduced to 1.0 nm. It was due to increase of specular electron by the nano-oxide layer (NOL) and of current shunting through the SFL. Moreover, the interlayer coupling field ( $H_{int}$) between free layer and pinned layer could be explained by considering the RKKY and magnetostatic coupling. The coercivity of the free layer ( $H_{cf}$ ) was significantly reduced as compared to the traditional spin valve (TSV), and was remained as low as 4 Oe when the $t_{F}$ varied from 1 nm to 4 urn. It was found that the SFL made it possible to reduce the free layer thickness and enhance the MR ratio without degrading the soft magnetic property of the free layer.

Molybdeum Oxide Film Preparation by a Magnetic Null Discharge Sputtering and its Application (자기 중성방전 스퍼터링에 의한 산화몰리브덴 박막의 제작 및 그 응용)

  • Kim, Doo-Hwan;Park, Cha-Soo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.169-175
    • /
    • 2009
  • In this experiment molybdeum oxide($MoO_3$) films were prepared by a magnetic null discharge(MND) sputtering system and fundamental properties by XRD, XPS and SEM analysis were investigated. The initial and mean insulation resistance of the same with $MoO_3$ film were about 1.4[$M{\Omega}$] and 800[$k{\Omega}$] under the condition of applied voltage of 400[V]. The preferred orientation in the films changed from(100) to (210) with substrate temperature. Two XPS peaks of the $MoO_3$ photoelectron were detected at the binding energies of 228.9[eV] and 232.4[eV], while the binding energy of the O1s peak was 532.6[eV]. The substrate temperature and reactivity gives large effects to the structure and growth of the film and system is also very useful for performing the uniform reactive deposition. It can be found from the result of a $MoO_3$ film deposition that the system is very useful for performing the uniform reactive sputtering.

AlN를 도핑시킨 ZnO박막의 전기적 및 광학적 특성

  • Son, Lee-Seul;Kim, Gyeom-Ryong;Lee, Gang-Il;Jang, Jong-Sik;Chae, Hong-Cheol;Gang, Hui-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.88-88
    • /
    • 2011
  • ZnO는 직접 천이형 반도체로써, 상온에서 3.4eV에 해당하는 띠틈을 가지고 있다. 뿐만 아니라 60meV의 큰 엑시톤 결합에너지를 가지고 있어 단파장 광전 소자 영역의 LED(Light Emitting Diode)나 LD(Laser Diode)에 널리 사용되고 있다. 하지만 일반적으로 격자틈새 Zn(Zni2+)이온이나 O 빈자리(V02+)이온과 같은 자연적인 도너 이온이 존재하여 n-형 전도성을 나타낸다. 그러므로 ZnO계 LED와 LD의 개발에 있어서 가장 중요한 연구 과제는 재현성 있고 안정된 고농도의 p-형 ZnO박막을 성장시키는 것이다. 하지만, 자기보상효과나 얕은 억셉터 준위, 억셉터의 낮은 용해도로 인하여 어려움을 가지고 있다. 본 연구에서는 고품질의 p-형 ZnO박막을 제작하기 위해 AlN를 도핑시킨 ZnO박막을 RF 마그네트론 스퍼터링 법을 이용하여 Ar과 O2분위기에서 성장시켰다. ZnO와 AlN타겟을 동시에 사용하였으며, ZnO타겟에 걸어준 RF 파워는 80W, AlN타겟에 걸어준 RF 파워는 5~20W로 변화시켰다. 박막의 전기적, 광학적 특성은 XPS (X-ray Photoelectron Spectroscopy), REELS (Reflection Electron Energy Loss Spectroscopy), XRD (X-ray Diffraction), SIMS (Secondary Ion Mass Spectrometry), AES (Auger Electron Spectroscopy), Hall measurement를 이용하여 연구하였다. XPS측정결과, AlN를 도핑시킨 ZnO박막의 Zn2p3/2와 O1s피크는 undoped ZnO박막의 피크보다 낮은 결합에너지에서 측정되었다. 모든 박막이 결정화 되었으며, (002)방향으로 우선적으로 성장된 것을 확인할 수 있었다. 홀 측정 결과, 기판을 $200^{\circ}C$로 가열하면서 성장시킨 박막이 p-형을 나타내었으며, 비저항(Resistivity)이 $5.51{\times}10^{-3}{\Omega}{\cdot}m$, 캐리어 농도(Carrier Concentration)가 $1.96{\times}1018cm^{-3}$, 이동도(Mobility)가 $481cm^2$/Vs이었다. 또한 QUEELS -Simulation에 의한 광학적 특성분석 결과, 가시광선영역에서 투과율이 90%이상으로 투명전자소자로의 응용이 가능하다는 것을 보여주었다.

  • PDF

Annealing Cycle Dependence of MR Properties for Free Layer in $Ni_{25}Mn_{75}-Spin$ Valve Films ($Ni_{25}Mn_{75}-Spin$ Valve 박막 자유층의 열처리 순환수에 따른 자기저항 특성)

  • 이낭이;이주현;이가영;김미양;이장로;이상석;황도근
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.62-66
    • /
    • 2000
  • Annealing cycle number and nonmagnetic layer thickness dependences of interlayer coupling field ( $H_{inf}$ ) and coercivity ( $H_{cf}$ ) of free magnetic layer on NiMn alloy-spin valve films (SVF) were investigated. The SVF is Glass (7059)/N $i_{81}$F $e_{l9}$(70 $\AA$)/Co(10 $\AA$)/Cu(t $\AA$)/Co(15 $\AA$)N $i_{81}$$Fe_{19}$(35 $\AA$)/N $i_{25}$M $n_{75}$(250 $\AA$)Ta(50 $\AA$) films, it were fabricated using the dc sputtering method at different pinning layer thickness and nonmagnetic spacer thickness (Cu thickness; 30 $\AA$, 35 $\AA$, 40 $\AA$) of NiMn alloy with 25 at.%. Ni In case that Cu thickness of SVF is 35 $\AA$ and peak exchange coupling field ( $H_{ex}$) was 620 Oe, while coercivity $H_{c}$ = 280 Oe and MR ratio showed 2.5%. As for $H_{inf}$ and $H_{cf}$ , every SVF increased up to the stabilized values with the increase of annealing cycle number 15, which were $H_{inf}$ of 120 Oe and $H_{cf}$ of 75 Oe. The increase of $H_{cf}$ with the annealing cycle number seems to be caused by the effective reduction of Cu layer thickness due to the increase of interfacial mixing of Cu layer and Co layer. In addition, the $H_{inf}$ and $H_{cf}$ dependences of free NiFe layer by the interfacial mixing effect were appeared the different aspects when Cu layer becomes more thinner and thicker than Cu layer thickness of 35 $\AA$, respectively.ively....

  • PDF

Measurement of Tensile Properties for Thin Aluminium Film by Using White Light Interferometer (백색광간섭계를 이용한 알루미늄 박막의 인장 물성 측정)

  • Kim, Sang-Kyo;Oh, Chung-Seog;Lee, Hak-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 2010
  • Thin films play an important role in many technological applications including microelectronic devices, magnetic storage media, MEMS and surface coatings. It is well known that a thin film's material properties can be very different from the corresponding bulk properties and thus there has been a strong need for the development of a reliable test method to measure the mechanical properties of a thin film. We have developed an alternative and convenient test method to overcome the limitations of previous membrane deflection experiment and uniaxial tensile test by adopting a white light interferometer having sub-nanometer out-of-plane displacement resolution. The freestanding aluminium specimens are tested to verity the effectiveness of the test method developed and get the tensile properties. The specimens are 0.5 rum wide, $1{\mu}m$ thick and fabricated through MEMS processes including sputtering. 1 to 5 specimens are fabricated on Si dies. The membrane deflection experiments are carried out by using a homemade tester consisted of a motor-driven loading tip, a load cell, and 6 DOF alignment stages. The test system is compact enough to set it up beneath a commercial white light interferometric microscope. The white light fringes are utilized to align a specimen with the tester. The Young's modulus and yield point stress of the aluminium film are 62 GPa and 247 MPa, respectively.