• 제목/요약/키워드: 자기변형 트랜스듀서

검색결과 32건 처리시간 0.027초

자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅 (Torsional Modal Testing of a Non-ferromagnetic Shaft by Magnetostrictive Patch Transducers)

  • 조승현;한순우;박찬일;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.879-885
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy task to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.

자기변형 트랜스듀서를 이용한 평판구조물의 특정방향 가진 및 측정 (The Actuation and Measurement of plate Structures at a Specific Direction by a Magnetostrictive Transducer)

  • 이주승;조승현;선경호;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.153-158
    • /
    • 2004
  • The coupling phenomenon between stress and magnetic induction, known as magnetostriction, has been successfully applied to generate and measure elastic waves. Most applications of this phenomenon thus far, however, are rather limited to cylindrical ferromagnetic waveguides. The main objective of this work is to develop a new patch-type, orientation-adjustable magnetostrictive transducer that is applicable for non-cylindrical, non-ferromagnetic waveguides. The existing patch-type transducer consisting of a ferromagnetic patch and a racetrack coil is useful to generate elastic waves only in one specific direction once the patch is bonded to a test specimen. However, the proposed transducer can transmit and receive elastic waves in any direction only with one patch at a given location. The proposed magnetostrictive transducer consists of a circular nickel patch, a figure-of-eight coil, and a couple of bias permanent magnets. Because of the unique configuration of the transducer, the propagating direction of the generated waves can be freely controlled since the set of bias magnets and the coil is not bonded to the magnetostrictive patch. In this work, the characteristics of the proposed transducer were investigated experimentally.

  • PDF