• Title/Summary/Keyword: 자기공명주파수분석

Search Result 32, Processing Time 0.034 seconds

Exchange Coupling Effect on Microwave Permeability in CoFe/MnIr Bilayers (교환 결합력을 갖는 CoFe/MnIr 박막의 마이크로파 투자율 특성)

  • Kim, Dong-Young;Kim, Chong-Oh;Kim, Cheol-Gi;Tsunoda, M.;Takahashi, M.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.234-239
    • /
    • 2006
  • We measured the microwave permeability in the frequency range of 100 MHz$\sim$9 GHz in the exchange biased CoFe/MnIr films. The results were analyzed based on the Landau-Lifshitz-Gilbert theory. The initial permeability and ferromagnetic resonance frequency was tuned by controlling the CoFe thickness and unidirectional anisotropy. The tunable range of ferromagnetic resonance frequency was up to 20 GHz in the thin CoFe layer of 1.5 nm. The CoFe/MnIr films showed the high permeability and low loss properties in the microwave frequency range. Thus, this material could be applied to the microwave devices.

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF

A Comparison of MRS Data for SVS and 3D CSI in Human Brain Study (두경부 MRS검사의 SVS와 3D CSI 데이터의 비교 분석및 임상응용을 위한 연구)

  • Yoon, Seong-Ik;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.93-95
    • /
    • 2005
  • MRS is to measure very small metabolite signals, whose resonant frequencies spread over the chemical shift range characteristic of the measured nucleus. The MR signal originates from the excited volume, which is a column of tissue divided into slices by gradient or rf encoding. The parameters that acquired data affected by TE, TR, and other variables. The higher spatial resolution of 3D CSI compared to SVS and its ability to examine regional metabolite variations for brain study.

  • PDF

Application of Magnetic Resonance Thermometry (MRT) on Fully Developed Turbulent Pipe Flow using 3T and 7T MRI (완전발달 난류 원관 유동에서의 3T 및 7T MRI를 이용한 자기공명온도계의 적용)

  • You, Hyung Woo;Baek, Seungchan;Kim, Dong-Hyun;Lee, Whal;Oh, Sukhoon;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.26-37
    • /
    • 2020
  • Magnetic resonance thermometry (MRT) is a technique capable of measuring three-dimensional mean temperature fields by utilizing temperature-dependent shifts in proton resonance frequency. In this study, experimental verification of the technique is obtained by measuring 3D temperature fields within fully developed turbulent pipe flow, using 3T and 7T MRI scanners. The effect of the proton resonance frequency (PRF) thermal constant is examined in detail.

Quantitative Conductivity Estimation Error due to Statistical Noise in Complex $B_1{^+}$ Map (정량적 도전율측정의 오차와 $B_1{^+}$ map의 노이즈에 관한 분석)

  • Shin, Jaewook;Lee, Joonsung;Kim, Min-Oh;Choi, Narae;Seo, Jin Keun;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.303-313
    • /
    • 2014
  • Purpose : In-vivo conductivity reconstruction using transmit field ($B_1{^+}$) information of MRI was proposed. We assessed the accuracy of conductivity reconstruction in the presence of statistical noise in complex $B_1{^+}$ map and provided a parametric model of the conductivity-to-noise ratio value. Materials and Methods: The $B_1{^+}$ distribution was simulated for a cylindrical phantom model. By adding complex Gaussian noise to the simulated $B_1{^+}$ map, quantitative conductivity estimation error was evaluated. The quantitative evaluation process was repeated over several different parameters such as Larmor frequency, object radius and SNR of $B_1{^+}$ map. A parametric model for the conductivity-to-noise ratio was developed according to these various parameters. Results: According to the simulation results, conductivity estimation is more sensitive to statistical noise in $B_1{^+}$ phase than to noise in $B_1{^+}$ magnitude. The conductivity estimate of the object of interest does not depend on the external object surrounding it. The conductivity-to-noise ratio is proportional to the signal-to-noise ratio of the $B_1{^+}$ map, Larmor frequency, the conductivity value itself and the number of averaged pixels. To estimate accurate conductivity value of the targeted tissue, SNR of $B_1{^+}$ map and adequate filtering size have to be taken into account for conductivity reconstruction process. In addition, the simulation result was verified at 3T conventional MRI scanner. Conclusion: Through all these relationships, quantitative conductivity estimation error due to statistical noise in $B_1{^+}$ map is modeled. By using this model, further issues regarding filtering and reconstruction algorithms can be investigated for MREPT.

Basic RF Coils Used in Multi-channel RF Coil and Its B1 Field Distribution for Magnetic Resonance Imaging System (자기공명영상 촬영 장치에서 다채널 RF Coil에 이용되는 기본 구조 RF Coil의 B1 Field 분석)

  • Kim, Yong-Gwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4891-4895
    • /
    • 2010
  • RF coil is an important component of the Magnetic Resonance Imaging (MRI) system and the performance of RF coil is one of major factors for high SNR images. Sensitivity and RF field uniformity are parameters for evaluating RF coil performance. Since the B1 field is induced by RF coil, MR signal is strongly affected by RF coil structure and arrangement. In receiving MR signal, the RF coil sensitivity to MR Signal is also determined by the induced B1 field of RF coil. Therefore, the spatial distribution of B1 field must be verified. In this work, we performed computer simulation of the basic RF coil structures using Matlab and verified their sensitivity and uniformity through their B1 field distribution. This work will be useful for the advanced multi-channel RF coil design.

Implant stability evaluation according to the bone condition, fixture diameter and shape in the osseointegration simulated resin model (골유착 재현 레진 모델에서 골 상태 및 임플란트 형태에 따른 임플란트 안정성에 관한 연구)

  • Kwon, Taek-Ka;Yeo, In-Sung;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • Purpose: Resonance frequency analysis, Periotest, and removal torque (RT) test were known as the methods to assess implant stability. The results of these methods are affected by the bone condition, implant diameter and shape. The purpose of this study is to access the meaning and the correlationship of the resonance frequency analysis, Periotest and RT test in osseointegration simulated acrylic resin when the engaged bone thickness and peri-implant bone defect are changed. Materials and methods: To simulate osseointegration, the fixture was fixed to an aluminum mold with a screw. Acrylic resin powder and liquid were poured into the mold for polymerization. The engaged resin thickness with implant was controlled. Simulated cortical bone thicknesses were 1, 3, 5 and 10 mm. Additional 1, 3 and 5 mm peri-implant bone defects were simulated. Three types of implants were used; 4 mm diameter implants of straight shape, 4 mm diameter implants of tapered shape and 5 mm diameter implants of tapered shape. Five fixtures per each type were tested in respective bone condition. Resonance frequency analysis and Periotest were evaluated in all bone conditions. Peak removal torque was measured at simulated cortical bone thicknesses of 1 and 3 mm. The statistical analysis was performed with the Kruskal-Wallis test, Mann-Whitney U test, and Spearman test using a 95% level of confidence. Results: With increasing engaged bone depth, the Implant Stability Quotient (ISQ) values increased and the Periotest values (PTVs) decreased (P<.001, P<.001). With increasing peri-implant bone defect, ISQ values decreased and PTVs increased (P<.001). When the diameter of implant increased, ISQ values increased and Periotest values (PTV) decreased (P<.001). There was a strong correlation between ISQ values and PTVs (r = -0.99, P<.001). Furthermore, the peak removal torque values had weak correlations with both ISQ values and PTVs (r = 0.52, P<.001 ; r = -0.52, P<.001). Conclusion: This study confirmed favorable implant stability with increasing engaged bone depth and implant diameter and decreasing peri-implant bone defect. ISQ values and PTVs showed strong correlation with each other and not with the peak removal torque values.

Nonlinearity in the Somatosensory Cortex Response to Vibrotactile Stimulator in fMRI (기능성 자기공명영상에서 진동자극에 대한 감각피질의 비선형성)

  • Lee, Hyun-Sook
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.159-166
    • /
    • 2006
  • The nonlinearity of hemodynamic response in the somatosensory cortex was investigated with vibrotactile stimulation. The stimuli consisted of a train of 25 Hz, each tasting five different duration periods, 2 s, 4 s, 8 s 12 s, or 16 s with 20 sec periods of no vibration in a pseudo-random order. In order to understand the linearity on the change of stimulus duration for somatosensory cortex, two different tests- checking the linearity of system and finding the impulse response function from gamma-variate function were applied to analyze the hemodynamic response functions. They have produced nearly same results. The BOLD response in the somatosensory cortex Is nonlinear for stimuli of less than 8 seconds, but nearly linear for stimuli greater than 8 seconds. The amplitude, area, TTP, and FWHM as functions of the stimulus duration were calculated and showed a significant downward trend with Increasing stimulus duration for the amplitude and the area. It supports the ranges of nonlinearity are less than 8 seconds.

  • PDF

Analysis of Eddy Current Effect in Magnetic Resonance Imaging Using the Finite Element Method (유한요소법에 의한 자기공명영상시스템에서의 와전류 영향 분석)

  • Lee, Jeong-Han;Gang, Hyeon-Su;Jo, Min-Hyeong;Mun, Chi-Ung;Lee, Gang-Seok;Lee, Su-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 1999
  • Eddy current in MRI systems degrades gradient field linearity and distorts gradient waveform. When the waveform distortion is spatially variant, it is very difficult to perform special imaging techniques such as the echo planar imaging technique or the fast spin echo imaging technique. In this study, we have developed a new technique to estimate the distorted gradient waveforms at any points inside the imaging region using the finite element method. After obtaining the eddy-current-effect transfer function, which represents magnitude and phase characteristics of the gradient field at a particular point, we have used the transfer function to estimate the actual gradient waveforms at the point. To verify the proposed technique, we have compared the estimated gradient waveforms with the measured ones.

  • PDF

Development of PC Based Signal Postprocessing System in MR Spectroscopy: Normal Brain Spectrum in 1.5T MR Spectroscopy (PC를 이용한 자기공명분광 신호처리분석 시스템 개발: 1.5T MR Spectroscopy에서의 정상인 뇌 분광 신호)

  • 백문영;강원석;이현용;신운재;은충기
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.2
    • /
    • pp.128-135
    • /
    • 2000
  • Purpose : The aim of this study is to develope the Magnetic Resonance Spectroscopy(MRS) data processing S/W which plays an important role as a diagnostic tool in clinical field. Materials and methods : Post-processing software of MRS based on graphical user interface(GUI) under windows operating system of personal computer(PC) was developed using MATLAB(Mathwork, U.S.A.). This tool contains many functions to increase the quality of spectrum data such as DC correction, zero filling, line broadening, Gauss-Lorentzian filtering, phase correction, etc. And we obtained the normal human brain $^1H$ MRS data from parietal white matter, basal ganglia and occipital grey matter region using 1.5T Gyroscan ACS-NT R6 (philips, Amsterdam, Netherland) MRS package. The analysis of the MRS peaks were performed by obtaining the ratio of peak area. Results : The peak ratios of NAA/Cr, Cho/Cr, MI/Cr for the different MRS machines have a little different values. But these peak ratios were not significantly different between different echo time MRS peak ratios in the same machine (p<0.05). Conclusion : MRS post-processing S/W based on GUI using PC was developed and applied to the analysis of normal human brain $^1H$ MRS. This independent MRS processing job increases the performance and throughput of patient scan of main console. Finally, we suggest that the database for normal in-yivo human MRS data should be obtained before clinical applications.

  • PDF