• Title/Summary/Keyword: 입출구각

Search Result 3, Processing Time 0.015 seconds

Performance Analysis on the Design Variables of a Turbo Blower (터보블로어 설계인자의 성능특성 연구)

  • Jang, Choon-Man;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.47-51
    • /
    • 2011
  • This paper describes the shape optimization of a blower impeller used for a refuse collection system. Two design variables, which are used to define the blade angles of an impeller, are introduced to increase the blower performance. A blower efficiency is selected as an object function, and the shape optimization of the blade angles is performed by a response surface method (RSM). Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data. Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study. Throughout the shape optimization, blower efficiency for the optimal blade angles is successfully increased up to 3.6% compared with that of reference at the design flow rate. Detailed flow field inside the turbo blower is also analyzed and discussed.

Performance Characteristics of Double-Inlet Centrifugal Blower According to Inlet and Outlet Angles of an Impeller (임펠러 입출구각에 따른 양흡입 원심송풍기 성능특성)

  • Lee, Jong-Sung;Jang, Choon-Man
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.191-199
    • /
    • 2014
  • Effects of design variables on the performance of a double-inlet centrifugal blower have been analyzed based on the three-dimensional flow analysis. Two design variables, blade inlet and outlet angles, are introduced to enhance a blower performance. General analysis code, ANSYS-CFX13, is employed to analyze internal flow and a blower performance. SST turbulence model is employed to estimate the eddy viscosity. Throughout the shape optimization of an impeller at the design flow condition, the blower efficiency and pressure are successfully increased by 4.7 and 1.02 percent compared to reference one. It is noted that separated flow observed near cut-off region can be reduced by optimal design of blade angles, which results in stable flow pattern in the blade passage and increase of a blower performance. The stable flow at the impeller also makes good effects at the outlet of a volute casing.

Development of Drainage Pump for Rescue Sinking Ship (침수선박 구조를 위한 대용량 배수펌프 개발)

  • Kim, Kyeong-Soo;Jung, Kang-Hyun;Kim, Hae-Young;Kim, Nam-Hun;Cho, Je-Hyoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.248-254
    • /
    • 2015
  • There has been no previous study on technology development of large capacity drainage pump for rescue sinking ship in the country. The agricultural drainage pump was widely used for rescue sinking ship but this pump has several problems such as efficiency, low displacement and malfunction in winter. Therefore, this paper proposes to solve the problems for swiftly rescue sinking ship and develops the drainage pump system that has $20m^3/min$ mass flow rate specification at suction head 8 m. The centrifugal pump type the most commonly used in the field of naval architecture and ocean engineering was selected and designed based on the requirement specification. The blade design of impeller was derived from the Stepanoff coefficient and requirement specification and used computational fluid dynamics to review the target mass flow rate according to the impeller RPM at design operating conditions. We also performed structure analysis of the impeller to find structurally vulnerable points for the pump in service and completed the theoretical design of drainage pump system.