• Title/Summary/Keyword: 입체 현미경

Search Result 83, Processing Time 0.029 seconds

Development of Stereoscopic Micro-PTV Method (Stereoscopic micro-PTV기법의 개발)

  • Yu, Cheong-Hwan;Kim, Hyoung-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.109-113
    • /
    • 2007
  • Micro-PIV is a well-known method for measurement of two- dimensional, two-component velocity in the microfluidic devices. Lots of the micro fluidic devices generate three-dimensional flow and 3D measurement of velocity is helpful to understand the physics of micro flow phenomena. In this study, we developed new micro 3D measurement method by applying 2-frame PTV in stereoscopic micro system. In this study, we did the validation study of SMPTV by using the simulated flow model to verify the accuracy and the feasibility of measurement and compared with SMPIV method. The results showed that SMPTV provides better spatial resolution and measurement accuracy than SMPIV method.

  • PDF

A Human Case of Centrocestus armatus Infection in Korea (Ceutyocestus aymatus의 인체 감염 1례)

  • 홍성종;서병설
    • Parasites, Hosts and Diseases
    • /
    • v.26 no.1
    • /
    • pp.55-60
    • /
    • 1988
  • A human case of Centrocestus armatus (Heterophyidae) infection was proved by identifying an adult worm collected after treatment with praziquantel in Korea. The case is 42-year old man who resides in a rural area in Sanchung-gun, Kyeongsangnam·do. The case was concomitantly infected with Clonorchis sinensis and had the history of eating raw (reshwater fishes including Zacco platypus, which are known to be the second intermediate host of C. armatus in Korea. This is the first report of natural human infection by C. armatus in the literature.

  • PDF

Dissection for rat hippocampus using high-definition stereoscopic microscope system (HD급 입체현미경시스템을 이용한 해마세포 적출)

  • Im, Yeong-Tae;Kim, Nam;Lee, Chan-Su;Lee, Gwon-Yeon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.367-368
    • /
    • 2007
  • Dissection of rat hippocampus using high-definition stereoscopic microscope system is demonstrated. Many surgical operation or animal anatomies are anatomized with stereoscopic microscope. With stereoscopic microscope system, the environments of operation is important factor to dissector. Lights, resolution of acquired stereo images, reflected on the liquid, colors and eye fatigue are fatal factors to dissector. We reduced reflections with two incident angle of lights at 45 degree and used a complementary color at the basement and reform the stereoscopic microsystem. Dissector has felt more comfortable after compensation and operation time is more continuous.

  • PDF

Construction of Anaglyphic Stereo Pair Image using Adobe $Photoshop^{(R)}$ Program (어도비포토샵 프로그램을 이용한 anaglyphic 입체영상 제작법)

  • Kim, Jee-Woong;Lee, Se-Jeong;Rhyu, Im-Joo
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.143-146
    • /
    • 2007
  • The objects of the nature have three dimensional (3-D) parameters. The 3-D profiles are embedded on the photographs and microscopic images. To understand 3-D configuration, stereo pair image with thick section is frequently employed. The perception of 3-D images is possible with the aid of stereoscopic glasses, although the expert can perceive 3-D images without the glasses. Anaglyphic stereo images are constructed by various softwares from commercial and freeware. Here we would like to present an easy anaglyphs construction method with Adobe $Photoshop^{(R)}$ based on tilting paired images from high voltage electron microscope. The anaglyphic stereo images constructed revealed the same 3-D perception with conventional stereoscopy. We could zoom in/out the anaglyph image digitally to investigate the detail configuration by real time. This method is expected to contribute to understanding complex structures 3 dimensionally.

High Voltage Electron Microscopy of Structural Patterns of Plastid Crystalline Bodies in Sedum rotundifolium (HVEM에 의한 둥근잎꿩의 비름 (Sedum rotundifolium L.) 색소체의 결정체 구조)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.73-82
    • /
    • 2006
  • Major contributions has been made in cellular ultrastructure studies with the use of high voltage electron microscopy (HVEM) and tomography. Applications of HVEM, accompanied by appropriate image processing, have provided great improvements in the analysis of three-dimensional cellular structures. In the present study, structural patterns of the crystalline bodies that are distinguished in mesophyll plastids of CAM-performing Sedum rotundifolium L., have been investigated using HVEM and tomography. Tilting, and diffraction pattern analysis were performed during the investigation. The titlting was performed at ${\pm}60^{\circ}\;with\;2^{\circ}$ increments while examining serial sections ranging from 0.125 to $1{\mu}m$ in thickness. The young plastids exhibited crystalline inclusion bodies that revealed a peculiar structural pattern. They were irregular in shape and also variable in size. Their structural attributes affected the plastid morphology. The body consisted of a large number of tubular elements, often reaching up to several thousand in number. The tubular elements typically aggregated to form a fluster The elements demonstrated either a parallel or lattice arrangement depending on the sectioning angle. The distance between the elements was approximately 20nm as demonstrated by the diffraction analysis. HVEM examination of the serial sections revealed an occasional fusion or branching of elements within the inclusion bodies. Finally, a three-dimensional reconstruction of the plastid crystalline bodies has been attempted using two different image processing methods.

A Survey of Plastid Crystals and Microtubules in Flowering Plants (꽃피는식물 색소체 내 결정구조와 미세소관의 발달양상 조사 연구)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.73-80
    • /
    • 2009
  • The plastid inclusion has long been known to exist in leaves of numerous plant species, especially in those of flowering plants. Among the inclusions, crystalline bodies are the most frequently distinguished structures of the foliar plastids, however, microtubules and phytoferritins are also reported occasionally. The crystalline inclusions vary in shape, and are located either in the stroma or within intrathylakoidal spaces, whereas microtubules and phytoferritins are more uniform in shape and are formed in the stroma. In crystalline structures, the composing elements exhibit a lattice pattern and/or paralleled tubules that are either bounded by membranes or exist without membrane enclosing. Other types of inclusions have not been shown to be enclosed by any membranous structures. According to the current survey, the plastid inclusion, with the exception of phytoferritins, has been shown to exhibit a crystalline or tubular pattern, and has been reported in more than 56 species of various families. Their occurrence is not restricted to any photosynthetic pathway, but is found to be randomly distributed among C-3, C-4 and CAM species, without phylogenetic relationships. The progress in plastid inclusion research reveals more information about the function and complexity, but the need for characterizing the 3-D structure of the crystalline inclusions also has been acknowledged in previous studies. A 3-D characterization would utilize tilting and tomography of serial sections with appropriate image processing that would provide valuable information on the sub-structures of the crystalline inclusions. In fact, recent studies performed on 3-D reconstruction of the plastid inclusions revealed important information about their comprising elements. In this article, the crystals and microtubules that have been reported in various types of plastids have been reviewed, with special consideration given to their possible sub-cellular function within the plastids.

A virus disease of sesame (Sesamum idicum L.) caused by watermelon mosaic virus (WMV) (참깨의 모자이크 증상에서 분리한 수박${\cdot}$모자이크 바이러스에 관한 연구)

  • Chang M.U.;Lee C.U.
    • Korean journal of applied entomology
    • /
    • v.19 no.4 s.45
    • /
    • pp.193-198
    • /
    • 1980
  • This paper deals with the studies on the occurence of a new virus disease of sesame and the identification of the causal virus. The virus disease of sesame has been regarded as a widespread disease in the sesame-growing areas in the southern part of Korea. The disease was found to be caused by watermelon mosaic virus (WMV). During the years since 1978, stunting of sesame plants, with yellow mosaic, necrotic spot, and malformation, were collected from 17 different places. Virus isolates from 27 out of 32 samples were identified as WMV. Natural infection of squash, pumpkin, cucumber, and watermelon by WMV as well as sesame was proved. The virus is inactivated at temperatures of 55 to $60^{\circ}C$, at dilution of $10^{-3}\;to\;10^{-4}$, and in the aging of 10 to 14 days at about $20^{\circ}C$. Sesame, Chenopodium amaranticelor, pea, bean, as well as many plants of the Cucurbitaceae, are susceptible to the sesame-isolates of WMV. In negatively stained preparations, particles of the virus appear under the electron microscope as flexible filaments of about $750\~800nm$ in length. Cylindrical inclusions and virus particles were found in the cytoplasm of mesophyll cells by ultra-thin sections of WMV infected tissues.

  • PDF

Bean common mosaic virus and Peanut mottle virus isolated from Peanut in Korea (땅콩(Arachis hypogaea)에서 분리한 Bean common mosaic virus와 Peanut mottle virus)

  • Koo, Dong-Jin;Shin, Hye-Young;Sung, Jung-Hyun;Kang, Dong-Kyon;Chang, Moo-Ung
    • Research in Plant Disease
    • /
    • v.8 no.2
    • /
    • pp.92-100
    • /
    • 2002
  • For the survey of viruses infected in peanut cultivated in Korea, peanut seeds and leaves showing viral symptoms were collected from their growing areas. Typical symptoms on virus infected peanut leaves including mosaic, mottle with necrosis, yellowing, stripe or vein banding and stunts were observed. Two viruses isolated from the naturally infected peanuts were identified as Bean common mosaic virus(BCMV-PSt) and Peanut mottle virus(PeMoV) by their host range, immunosorbent elcetron microscopy(ISEM), direct immuno staining assay(DISA), RT-PCR, and intracellural symptoms. Direct negative staining method by electron microscope showed filamentous particles of about 780 m in length as well as inclusion bodies. In ultrathin sections of BCMV-PSt and PeMoV infected tissues, cytoplasmic cylindrical inclusions as well as filamentous virus particles were observed in the cytoplasm of parenchyma cells. ISEM revealed filamentous particles strongly decorated with antiserums of BCMV-PSt and PeMoV Peanut seeds were stained with BCMV-PSt and PeMoV antisera indicating the possibility of seed transmission far these viruses. Seedlings germinated from peanut seeds which reacted with antiserums of BCMV-PSt by DISA showed mild mottle or stripe symptoms while mosaic and necrotic mottle symptoms were observed for PeMoV-positive seedlings. Filamentous particles were strongly decorated with each antiserum under ISEM observation. BCMV-PSt coat protein gene of about 1.2 Kbp was amplified by RT-PCR. Altogether these results indicate that BCMV-PSt is the most prevalent virus infecting peanut in Korea.

Three-Dimensional Analysis of the Mesophyll Plastids Using Ultra High Voltage Electron Microscopy (초고압전자현미경에 의한 엽육세포 색소체 미세구조의 3차원적 분석)

  • Kim, In-Sun;Park, Sang-Chan;Han, Sung-Sik;Kim, Eun-Soo
    • Applied Microscopy
    • /
    • v.36 no.3
    • /
    • pp.217-226
    • /
    • 2006
  • Image processing by ultra high voltage electron microscopy (UHVEM) and tomography has offered major contributions to research in the field of cellular ultrastructure. Furthermore, such advancements also have enabled the improved analysis of three-dimensional cellular structures in botany. In the present study. using UHVEM and tomography, we attempted to reconstruct the three-dimensional images of plastid inclusions that probably differentiate during photosynthesis. The foliar tissues were studied Primarily with the TEM and further examined with UHVEM. The spatial relationship between tubular elements and the thylakoidal membrane and/or starch grains within plastids mainly have been investigated in CAM-performing Sedum as well as in $C_4$ Salsola species. The inclusion bodies were found to occur only in early development in the former, while they were found only in mesophyll cells in the latter. The specimens were tilted every two degrees to obtain two-dimensional images with UHVEM and subsequently comparison has been made between the two types. Digital image processing was performed on the elements of the inclusion body using tilting, tomography, and IMOD program to generate and reconstruct three-dimensional images on the cellular level. In Sedum plastids, the inclusion bodies consisted of tubular elements exhibiting about 20 nm distance between elements. However, in Salsola, plastid inclusion bodies demonstrated quite different element structure, displaying pattern, and origin relative to those of the Sedum. The inclusion bodies had an integrative relationship with the starch grains in both species.

Occurrence of Nuclear Inclusions in Plant Cells (식물세포 내 핵 함유구조 발달 양상)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.229-234
    • /
    • 2011
  • The occurrence of nuclear inclusions has been reported in various plant groups from primitive ferns to higher flowering plants. Their presence within a group seems to be randomly distributed without any phylogenetic relationships among species. According to the current survey, nuclear inclusions have been widely documented in more than several hundreds of species from various families of plants. The morphology and internal structures of nuclear inclusions are diverse and at least five types of inclusions develop within plant nuclei; amorphous, crystalline, fibrous, lamellar, and tubular form. Among these types, crystalline inclusions are the ones that are the most frequently reported. The inclusions are not bound by membranes and appear to be related to the nucleoli, either spatially by a close association or by an inverse relationship in size during development. The idea that nuclear inclusions are of a proteinaceous nature has been widely accepted. Further link to nucleolar activity as a protein storing site has also been suggested based on the association between the nucleolus and nuclear inclusions. Various investigations of nuclear inclusions have revealed more information about their structural features, but characterizing their precise function and subunit complexity employing molecular analysis and 3-D reconstruction remains to be elucidated. Tilting and tomography of serial sections with appropriate image processing can provide valuable information on their subunit(s). The present review summarizes discussion about different nuclear inclusions in plants from previous works, giving special attention to their fine, ultrastructural morphology, function, and origin.