A Survey of Plastid Crystals and Microtubules in Flowering Plants

꽃피는식물 색소체 내 결정구조와 미세소관의 발달양상 조사 연구

  • Kim, In-Sun (Biology Department, College of Natural Sciences, Keimyung University)
  • 김인선 (계명대학교 자연과학대학 생물학과)
  • Received : 2009.05.27
  • Accepted : 2009.06.24
  • Published : 2009.06.30

Abstract

The plastid inclusion has long been known to exist in leaves of numerous plant species, especially in those of flowering plants. Among the inclusions, crystalline bodies are the most frequently distinguished structures of the foliar plastids, however, microtubules and phytoferritins are also reported occasionally. The crystalline inclusions vary in shape, and are located either in the stroma or within intrathylakoidal spaces, whereas microtubules and phytoferritins are more uniform in shape and are formed in the stroma. In crystalline structures, the composing elements exhibit a lattice pattern and/or paralleled tubules that are either bounded by membranes or exist without membrane enclosing. Other types of inclusions have not been shown to be enclosed by any membranous structures. According to the current survey, the plastid inclusion, with the exception of phytoferritins, has been shown to exhibit a crystalline or tubular pattern, and has been reported in more than 56 species of various families. Their occurrence is not restricted to any photosynthetic pathway, but is found to be randomly distributed among C-3, C-4 and CAM species, without phylogenetic relationships. The progress in plastid inclusion research reveals more information about the function and complexity, but the need for characterizing the 3-D structure of the crystalline inclusions also has been acknowledged in previous studies. A 3-D characterization would utilize tilting and tomography of serial sections with appropriate image processing that would provide valuable information on the sub-structures of the crystalline inclusions. In fact, recent studies performed on 3-D reconstruction of the plastid inclusions revealed important information about their comprising elements. In this article, the crystals and microtubules that have been reported in various types of plastids have been reviewed, with special consideration given to their possible sub-cellular function within the plastids.

다양한 색소체 내에 형성되는 결정체와 미세소관의 분포 및 발달양상을 식물이 수행하는 광합성 양식과 연계하여 꽃피는식물 종들에서 밝혀진 결과에 의하면, 색소체 결정체는 대개 격자 구조를 이루며 기질 또는 티라코이드 내에 형성되나, 미세소관은 비교적 규칙적인 형태로 기질에만 발달한다고 알려져 있다. 격자구조는 막으로 둘러싸이거나 막과는 무관하게 발달하며, 계통학적인 유연관계를 형성하지 않고 C-3 또는 C-4 또는 CAM 광합성을 수행하는 26개의 식물과, 약 56종에서 독립적으로 나타난다는 사실이 조사되었다. 색소체 결정체 및 미세소관 형성에 대한 지속적인 연구는 이들의 구조와 기능에 대하여 새로운 정보를 제공하나, 결정체에 대한 3차원적 입체구조 연구와 미세소관에 대한 분자생물학적인 실험법들이 요구되고 있는 실정이다. 특히, HVEM 고압전자현미경 및 tomography에 의한 연속절편 연구는 결정체의 3-D 입체구조 구현이 가능하여 심도 있는 구조정보를 제공하는 것으로 알려져 있다. 극히 일부의 식물에서만 보고되어 있는 색소체 내 미세소관에 대한 연구에 관해서는 먼저 색소체 기질에서 이들의 형성 시점을 알아내어 기질에서의 식별 및 분리 연구 등이 가능하게 돼야함이 강조되고 있다. 본 논문에서는 꽃피는식물 종들의 여러 색소체 유형에서 보고된 결정체와 미세소관을 조사하여 색소체 내에서 이들의 기능을 광합성과 연계하여 종합적으로 논의하였다.

Keywords

References

  1. Ames IH: The fine structure of genetic tumor cells. Amer J Bot 59 : 341-345, 1972 https://doi.org/10.2307/2441542
  2. Ames IH, Pivorun JP: A cytochemical investigation of a chloroplast inclusion. Amer J Bot 61 : 794-797, 1974 https://doi.org/10.2307/2441796
  3. Artus NN, Ryberg M, Sundqvist C: Plastid microtubule structures in wheat are insensitive to microtubule inhibitors. Physiol Plant 79 : 641-648, 1990 https://doi.org/10.1111/j.1399-3054.1990.tb00038.x
  4. Brandao I, Salema R: Microtubules in chloroplasts of a higher plant (Sedum sp.). J Submicr Cytol 6 : 381-390, 1974
  5. Brinkley W: Microtubules: a brief historical perspective. J Struct Biol 118 : 84-86, 1997 https://doi.org/10.1006/jsbi.1997.3854
  6. Casadoro G, Rascio N, Pagiusco M, Ravagnan N: Flowers of Orontium aquaticum L.: membrane rearrangement in chloroplastchromoplast interconversions. J Ultrastruct Res 81 : 202-208, 1982 https://doi.org/10.1016/S0022-5320(82)90076-4
  7. Dey PM, Brownleader MD, Harborne JB: The plant cell and its molecular components, In: Dey PM, Harborne JB, ed, Plant Biochemistry, pp. 1-48, Academic Press, 1997
  8. Diaz-Ruiz JR: A Highly ordered protein from Pelargonium: structure and cellular localization. J Utrastruct Res 53 : 227-234, 1975 https://doi.org/10.1016/S0022-5320(75)80139-0
  9. Dodge JD, Lawes GB: Plastid ultrastructure in some parasitic and semi-parasitic plants. Cytobilogie 9 : 1-9, 1974
  10. Dustin P: Microtubules. Springer-Verlag, Berlin, pp. 94-126, 1984
  11. Emter O, Falk H, Sitte P: Specific carotenoids and proteins as prerequisites for chromoplast tubule formation. Protoplasma 157 : 128-135, 1990 https://doi.org/10.1007/BF01322645
  12. Esau K: Crystalline inclusion in thylakoids of spinach chloroplasts. J Utrastruct Res 53 : 235-243, 1975 https://doi.org/10.1016/S0022-5320(75)80140-7
  13. Finer JJ, Smith RH: Structure and development of plastids in epidermal cells of African violet (Saintpaulia ionantha Wendl.) in culture. Ann Bot 51 : 691-695, 1983 https://doi.org/10.1093/oxfordjournals.aob.a086520
  14. Gailhofer M: Die Feinstruktur der Plastideneinschlsse von Ranunculus bulbosus. Phyton 23 : 197-210, 1983
  15. Gailhofer M, Kferbck T, Thaler I: Cytochemische Undersuchungen an Einschlssen in Plastiden der Bltter von Taraxacum officinale. Phyton 30 : 173-185, 1990
  16. Gailhofer M, Thaler I: Eiweibkristalle in den Plastiden der Keimpflanzen einiger Palmen. Phyton 15 : 251-258, 1974
  17. Gailhofer M, Thaler I: 'Stromazentrum' in Leukoplasten der Epidermis von Asphodelus microcarpus. Phyton 19 : 97-102, 1978
  18. Galatis B, Apostolakos P: Microtubule organization and morphogenesis of stomata in caffeine-affected seedlings of Zea mays. Protoplasma 165 : 11-26, 1991 https://doi.org/10.1007/BF01322273
  19. Gunning BES, Steer MW: Plant Cell Biology: Structure and Function. Jones and Bartlett Publishers, Boston, pp. 1-60, 1996
  20. Hoefert LL, Esau K: Plastid inclusion in epidermal cells of Beta. Am J Bot 62 : 36-40, 1975 https://doi.org/10.2307/2442075
  21. Hohl HR: Plastids and tumorigenesis. Am J Bot 48 : 528, 1961
  22. Kim IS: Chloroplast microtubules in young leaves of Sedum rotundifolium. J Plant Biol 40 : 115-119, 1997 https://doi.org/10.1007/BF03030243
  23. Kim IS: Changes in the plastid ultrastructure during Sedum rotundifolium leaf development. J Plant Biol 49 : 376-383, 2006 https://doi.org/10.1007/BF03178815
  24. Kim IS, Fisher DG: Structure aspects of the leaves of seven species of Portulaca growing in Hawaii. Can J Bot 68 : 1803-1811, 1990 https://doi.org/10.1139/b90-233
  25. Kim IS, Pak JH, Seo SB, Song SD: Foliar ultrastructure of Korean Orostachys species. Korean J Electron Microscopy 25 : 457-463, 1995
  26. Kim IS, Pak JH, Seo SB, Song SD: Ultrastructure of leaves in C$_{4}$ Cyperus iria and C$_{3}$ Carex siderosticta. J Plant Biol 42 : 213-221, 1999 https://doi.org/10.1007/BF03030481
  27. Kim IS, Park SC, Han SS, Kim ES: Three-dimensional analysis of the mesophyll plastids using ultra high voltage electron micro-scopy. Korean J Electron Microscopy 36 : 217-226, 2006
  28. Knoth R: Protein crystalloids in ribosome-deficient plastids of Aeonium domesticum cv. variegatum (Crassulaceae). Planta 156 : 528-535, 1982 https://doi.org/10.1007/BF00392776
  29. Kuhn H: Chemismus, Struktur und Entstehung der Carotinkristllchen in der Nebenkrone von Narcissus poeticus L. var. 'La Riante'. J Ultrastruct Res 33 : 332-355, 1970 https://doi.org/10.1016/S0022-5320(70)90026-2
  30. Larsson C, Collin C, Albertsson P: The fine structure of chloroplast stroma crystal. J Ultrastruct Res 45 : 50-58, 1973 https://doi.org/10.1016/S0022-5320(73)90032-4
  31. Laudi G, Medeghini Bonatti P, Fricano G: Ultrastructure of plastids of parasitic higher plants. V. Influence of light on Cuscuta plastids. Isr J Bot 23 : 145-150, 1974
  32. Lawrence ME, Possingham JV: Observations of microtubule structures within spinach plastids. Biol Cell 53 : 77-82, 1984
  33. Lee KB: Structure and development of the upper haustorium in the parasitic flowering plant Cuscuta japonica (Convolvulaceae). Amer J Bot 94 : 737-745, 2007 https://doi.org/10.3732/ajb.94.5.737
  34. Lee KB: Ultrastructure and development of seedling of the parasitic weed Cuscuta japonica. J Plant Biol 50 : 213-219, 2007a https://doi.org/10.1007/BF03030632
  35. Lee KB: Ultrastructure of crystalline inclusion in the thylakoids of dodder (Cuscuta japonica) plastids. J Plant Biol 50 : 325-330, 2007b https://doi.org/10.1007/BF03030662
  36. Lee RE, Thompson A: The stromacentre of plastids of Kalancho Pinnata Persoon. J Ultrastruct Res 42 : 451-456, 1973 https://doi.org/10.1016/S0022-5320(73)80018-8
  37. Ljubesic N: Chromoplasts in the petals of Liriodendron tulipifera L. Z Pflanzenphysiol 91 : 49-52, 1979 https://doi.org/10.1016/S0044-328X(79)80064-1
  38. Lyshede OB: Electron microscopy of the filiform seedling axis of Cuscuta pedicellata. Bot Gaz 150 : 230-238, 1989 https://doi.org/10.1086/337767
  39. McDonald MS: Photobiology of Higher Plants. John Wiley & Sons Ltd., San Fransisco, pp. 33-73, 149-198, 2003
  40. Mikulska E, Damsz B, Zolnierowicz H: Structural and functional polymorphism of plastids in leaves of Clivia miniata Rgl. I. Ontogenesis of plastids in epidermis and guard cells. Acta Soc Bot Pol 50 : 381-389, 1981
  41. Miller KR, Bloodgood RA, Staehelin LAL: Crystals within thylakoids: a structural analysis. J Ultrastruct Res 54 : 29-36, 1976 https://doi.org/10.1016/S0022-5320(76)80005-6
  42. Newcomb EH: Fine structure of protein-storing plastids in bean root tips. J Cell Biol 33 : 143-163, 1967 https://doi.org/10.1083/jcb.33.1.143
  43. Newcomb W: Plastid structure and development. In: Dennis DT, Turpin DH, Lefebvre DD, Layzell DB, eds, Plant Metabolism, pp. 255-259, Longman, Harlow, 1997
  44. Nick P: Plant Microtubules: Potential for Biotechnology. Springer, Berlin, pp.1-50, 83-136, 2000
  45. Nisius A: The stromacentre in Avena plastids: An aggregation of $\beta$-glucosidase responsible for the activation of oat-leaf saponins. Planta 173 : 474-481, 1988 https://doi.org/10.1007/BF00958960
  46. Oross JW, Possingham JV: Tubular structures in developing plastids of three dicotyledonous species. Can J Bot 69 : 136-139, 1991 https://doi.org/10.1139/b91-019
  47. Pettifrew, WT, Vaughn KC: Physiological, structural, and immunological characterization of leaf and chloroplast development in cotton. Protoplasma 202 : 23-37, 1998 https://doi.org/10.1007/BF01280872
  48. Platt-Aloia KA, Thomson WW: Membrane bound inclusions in epidermal plastids of developing sesame leaves and cotyledons. New Pytol 83 : 793-799, 1979 https://doi.org/10.1111/j.1469-8137.1979.tb02310.x
  49. Price WC, Martinez AP, Warmke HE: Crystalline inclusions in chloroplasts of the coconut palm. J Ultrastruct Res 14 : 618-621, 1966 https://doi.org/10.1016/S0022-5320(66)80086-2
  50. Rascio N, Colombo PM, Vicca FD, Chitano P: Intrathylakoidal crystal appearance during the vital cycle of spinach chloroplasts. Protoplasma 126 : 153-157, 1985 https://doi.org/10.1007/BF01287682
  51. Rickson FR: The ultrastructure of Acasia cornigera L. Beltian body tissue. Amer J Bot 62 : 913-922, 1975 https://doi.org/10.2307/2441636
  52. Rivera ER, Arnott HJ: Tubular structure in the plastids of Echinomastus intertextus Brit. & Rose. New Phytol 90 : 551-561, 1982 https://doi.org/10.1111/j.1469-8137.1982.tb04488.x
  53. Ryberg H, Ryberg M, Sundqvist C: Plastid ultrastructure and development. In: Sundqvist, C Ryberg M. eds, Pigment-Protein Complexes in Plastids: synthesis and Assembly, pp. 25-62, Academic Press, San Diego, 1993
  54. Salema R, Brandao I: Development of microtubules in chloroplasts of two halophytes forced to follow Crassulacean acid metabolism. J Ultrastruct Res 62 : 132-136, 1978 https://doi.org/10.1016/S0022-5320(78)90026-6
  55. Santos I, Salema R: Chloroplast microtubules in some CAM-plants. Bol Soc Brot Ser (2) 53 : 1115-1122, 1981
  56. Santos I, Salema R: Stereological study of the variation of the chloroplast tubules and volume in the CAM plant Sedum telephium. Z Pflanzenphysiol Bd 113 : 29-37, 1983 https://doi.org/10.1016/S0044-328X(83)80016-6
  57. Sherman TD, Pettigrew WT, Vaughn KC: Structural and immunological characterization of the Cuscuta pentagona L. chloroplast. Plant Cell Physiol 40 : 592-603, 1999 https://doi.org/10.1093/oxfordjournals.pcp.a029582
  58. Shojima S, Nishizawa NK, Mori S: Do intrathylakoidal inclusions really contain RUBPCase? Protoplasma 140 : 187-189, 1987 https://doi.org/10.1007/BF01273728
  59. Shumway LK, Weier TE, Stocking CR: Crystalline structures in Vicia faba chloroplasts. Planta 76 : 182-189, 1967 https://doi.org/10.1007/BF00385464
  60. Sitte P: Plastid metamorphosis and chromoplasts in Chrysosplenium. Z Pflanzenphysiol 73 : 243-265, 1974
  61. Sprey B: Membranassoziierte Tubuli Wahrend der Chloroplastengenese von Hordeum vulgare L. Protoplasma 84 : 197-203, 1975 https://doi.org/10.1007/BF02075956
  62. Sprey B: Intrathylakoid occurrence of ribulose 1,5-diphosphate carboxylase in spinach chloroplasts. Z Pflanzenphysiol 78 : 85-89, 1976 https://doi.org/10.1016/S0044-328X(76)80144-4
  63. Spurr AR, Harris WM: Ultrastructure of chloroplasts and chromoplasts in Capsicum annumI. Thylakoid membrane changes during fruit ripening. Amer J Bot 55 : 1210-1224, 1968 https://doi.org/10.2307/2440743
  64. Suzuki S: Crystalline inclusion in epidermal and vascular plastids of the mature Amaranthus leaf. J Electron Microsc 27 : 141-143, 1978
  65. Thompson A, Vogel J, Lee RE: Carbon dioxide uptake in relation to a plastid inclusion body in the succulent Kalancho pinnata Persoon. J Exp Bot 28 : 1037-1041, 1977 https://doi.org/10.1093/jxb/28.4.1037
  66. Thomson WW, Journett RD: Observations on bodies in subsidiary cells of Opuntia sp. J Ultrastruct Res 31 : 439-443, 1970 https://doi.org/10.1016/S0022-5320(70)90160-7
  67. Vanderzee D, Kennedy RA: Plastid development in seedlings of Echinochloa crus-galli var. oryzicola under anoxic germination conditions. Planta 155 : 1-7, 1982 https://doi.org/10.1007/BF00402924
  68. Vapaavuori EM, Korpilahti E, Nurmi AH: Photosynthetic rate in willow leaves during water stress and changes in the chloroplast ultrastructure with special reference to crystal inclusions. J Exp Bot 35 : 306-321, 1984 https://doi.org/10.1093/jxb/35.3.306
  69. Varkey PJ, Nadakavukaren MJ: Influence of leaf differentiation on the developmental pathway of Coleus chloroplasts. New Phytol 92 : 273-278, 1982 https://doi.org/10.1111/j.1469-8137.1982.tb03385.x
  70. Vaughn KC, Coyle PC, Wilson KG: Modifications of plastid ultrastructure in an efficient yellow mutant of spinach. Photosynthetica 15 : 201-204, 1981
  71. Vaughn KC, Wilson KG: Improved visualization of plastid fine structure: plastid microtubules. Protoplasma 108 : 21-27, 1981 https://doi.org/10.1007/BF01276880
  72. Williams E: Fine structure of vascular and epidermal plastids of the mature maize leaf. Protoplasma 79 : 395-400, 1974 https://doi.org/10.1007/BF01276614
  73. Willison JHM, Davey MR: Fraction 1 protein crystals in chloroplasts of isolated tobacco leaf protoplasts: a thin-section and freeze-etch morphological study. J Ultrastruct Res 55 : 303-311, 1976 https://doi.org/10.1016/S0022-5320(76)80088-3
  74. Wrischer M: Kristalloide im Plastidenstroma I. Elektronenmikroskopisch-cytochemische untersuchungen. Planta 75 : 309-318, 1967 https://doi.org/10.1007/BF00387354
  75. Wrischer M: Protein crystalloids in the stroma of bean plastids. Protoplasma 77 : 141-150, 1973 https://doi.org/10.1007/BF01287298