• Title/Summary/Keyword: 입체 영상 장치 3D

Search Result 67, Processing Time 0.027 seconds

Image Processing Technique of the 3D Animation on Smartphone (스마트폰 상에서의 3D 애니메이션 영상처리 기법)

  • Ryu, Chang-su;Hur, Chang-wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.183-185
    • /
    • 2013
  • As mobile devices have developed, flash animations suitable for the existing web have solved part of the weakness caused by the image quality deterioration and the transmission capacity, but it is difficult to express 3D stereo-scopic images. Also, for the real time-randering of visual expressions for animation and the device technique for smartphone to accord with commercial demands, it is required to develop the 3D image processing technique. This paper studied on the image processing method for 3D animation capable of 3D graphic rendering with view system of android and OpenGL M3G in an embedded system device and OpenGL ES 2.0 library.

  • PDF

Reproducibility evaluation of the use of pressure conserving abdominal compressor in lung and liver volumetric modulated arc therapy (흉복부 방사선 치료 시 압력 기반 복부압박장치 적용에 따른 치료 간 재현성 평가)

  • Park, ga yeon;Kim, joo ho;Shin, hyun kyung;Kim, min soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.71-78
    • /
    • 2021
  • Purpose: To evaluate the inter-fractional position and respiratory reproducibility of lung and liver tumors using pressure conserving type(P-type) abdominal compressor in volumetric modulated arc therapy(VMAT). Materials and methods: Six lung cancer patients and three liver cancer patients who underwent VMAT using a P-type abdominal compressor were included in this study. Cone-beam computed tomography(CBCT) images were acquired before each treatment and compared with planning CT images to evaluate the inter-fractional position reproducibility. The position variation was defined as the difference of position shift values between target matching and bone matching. 4-dimensional cone-beam computed tomography(4D CBCT) images were acquired weekly before treatment and compared with planning 4DCT images to evaluate the inter-fractional respiratory reproducibility. The respiratory variation was calculated by the magnitude of excursions by breathing. Results: The mean ± standard deviation(SD) of overall position variation values, 3D vector in the three translational directions were 1.1 ± 1.4 mm and 4.5 ± 2.8 mm for the lung and liver, respectively. The mean ± SD of respiratory variation values were 0.7 ± 3.4 mm (p = 0.195) in the lung and 3.6 ± 2.6 mm (p < 0.05) in the liver. Conclusion: The use of P-type compressor in lung and liver VMAT was effective for stable control of inter-fractional position and respiratory variation by reproduction of abdominal compression. Appropriate PTV margin must be considered in treatment planning, and image guidance before each treatment are required in order to obtain more stable reproducibility

Development of Three-Dimensional Gamma-ray Camera (방사선원 3차원 위치탐지를 위한 방사선 영상장치 개발)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.486-492
    • /
    • 2015
  • Radiation source imaging system is essential for protecting of radiation leakage accidents and minimizing damages from the radioactive materials, and is expected to play an important role in the nuclear plant decommissioning area. In this study, the stereoscopic camera principle was applied to develop a new radiation imaging device technology that can extract the radiation three-dimensional position information. This radiation three-dimensional imaging device (K3-RIS) was designed as a compact structure consisting of a radiation sensor, a CCD camera, and a pan-tilt only. It features the acquisition of stereoscopic radiation images by position change control, high-resolution detection by continuous scan mode control, and stereoscopic image signal processing. The performance analysis test of K3-RIS was conducted for a gamma-ray source(Cs-137) in radiation calibration facility. The test result showed that a performance error with less than 3% regardless of distances of the objects.

Stereo-video Synchronization for 3D Video Transmission (3차원 비디오 전송을 위한 스테레오비디오 동기화 방법)

  • Lee, Dong-Jin;Lee, Seon-Oh;Sim, Dong-Gyu;Lee, Hyuk-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4B
    • /
    • pp.349-359
    • /
    • 2009
  • In this paper, we propose a stereo-video transmission method for reduction of delay and maximization of 3D effect. Conventional multimedia synchronization algorithms were designed to achieve minimum delay and synchronize multiple video and audio streams, however, they could not be effective for 3D video transmission. In this paper, we proposed a synchronization algorithm by considering the minimum error of time difference between streams for 3D effect. The minimum error of time difference for 3D effect was derived based on a 3D subjective quality test. We compute display time of the delivered videos within the allowed time-difference and the video are displayed according to the display time. To evaluate the performance of the proposed algorithm, we implemented a real-time video communication system and subjective quality test has been conducted with the proposed system. We found that video quality displayed by the proposed system. We found that video quality displayed by the proposed algorithm ranks 'good' and 'excellent' in the DMOS (Differential Mean Opinion Score) scale, based on the MOS (Mean Opinion Score) test.

Design and Tolerance Analysis of 3-D Stereoscopic Display Modules with Alternating Illumination Angles (조명각 변조 방식의 3차원 입체영상 표시장치설계 및 공차분석)

  • Jeong, Woo-Chul;Ha, Sang-Woo;Park, Hun-Yang;O, Beom-Hwan;Park, Se-Geun;Lee, El-Hang;Lee, Seung-Gol;Park, Sun-Ryoung;Jo, Sung-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In order to realize a 3-D stereoscopic display module with alternating illumination angles, several conditions required for a lenticular lens sheet were established, and then both the lens specification and the module structure were designed. Also the performance of the stereoscopic module and its tolerance characteristics were evaluated by simulating the intensity distribution on the observation plane with a finite-ray tracing technique. From the evaluation, it was known that an intersection area between two adjacent lenses should not be filled and that the lateral mismatch between a planar liquid crystal shutter and a lens sheet should be minimized.

The Visualization and the Fast Detection of Gamma Radiation Source using Stereo Image Processing (영상처리기반 감마선원 거리탐지 고속화 및 가시화 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.2001-2006
    • /
    • 2016
  • The stereo radiation detection system detects the gamma source and acquires two dimensional left and right images for gamma source and visible objects using the detection result. And then the system measures the distance to the radiation source from the system in 3D space using stereo vision algorithm. In this paper, we implemented the fast detection algorithm for gamma source from the system in 3D space to reduce the detection time with image processing algorithms. Additionally, the system's performance is verified through experiments on gamma irradiation facilities. As a result, if the fast detection algorithm applied to the system, we can confirm that the detection system represents a 35% better performance than the conventional detection method that is full scanning to acquire the stereo image. We also have visualized a gamma source distribution through a 3D monitor using the stereo vision algorithm in order to provide the information of radiation spatial distribution to the user efficiently.

Microvascular Contrast Image in Portal Veins of Rat using Micro-CT (마이크로 CT를 이용한 BALB/C(흰쥐) 간문맥의 미세혈관 조영 영상)

  • Lee, Sang-Ho;Lim, Cheong-Hwan;Jung, Hong-Rayng;Han, Beom-Hee;Mo, Eun-Hee;Chai, Kyu-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.259-266
    • /
    • 2010
  • The study focuses on the value of Micro CT, a high resolution X-ray imaging device, by using it on rats to observe the overall portal vein image of the liver and the microvasculature of each lobes, visualize the 4 segmental lobes and acquire 3D image of the microvasculature through the reconstruction of sectional image data. Less of the damage to liver of the 5 mice, the device was able to separate the liver into 4 segmental lobes and displayed the 4 portal vein microvasculature in 2D. By using the 3D MIP technique, observation of the whole portal vein system microvasculature in 3D image was made possible along with each of the portal vein segment's branches until the 6th branch. Measured the size of 6branch, the average was measured at 1branch : $0.51mm{\pm}0.08$, 2 branch : $0.32mm{\pm}0.12$, 3 branch : $0.23mm{\pm}0.11$, 4 branch : $0.19mm{\pm}0.08$, 5 branch : $0.13mm{\pm}0.06$, 6 branch : $70.5{\mu}m{\pm}14.1$. The 3D image and the images of the microvasculatures in the result of study proved that the Micro-CT can be considered many useful device in obtaining high resolution images.

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Real-Time Shooting Area Analysis Algorithm of UAV Considering Three-Dimensional Topography (입체적 지형을 고려한 무인항공기의 실시간 촬영 영역 분석 알고리즘)

  • Park, Woo-Min;Choi, Jeong-Hun;Choi, Seong-Geun;Hwang, Nam-Du;Kim, Hwan-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1196-1206
    • /
    • 2013
  • In this paper, based on the information about navigation system of UAV with PTZ camera and 3D topography, algorithm able to show us in real-time UAV's geographical shooting location and automatically calculate superficial measure of the shooting area is proposed. And the method that can automatically estimate whether UAV is allowed to shoot a specific area is shown. In case of an UAV's shooting attempt at the specific area, obtainability of valid image depends on not only UAV's location but also information of 3D topography. As a result of the study, Ground Control Center will have real-time information about whether UAV can shoot the needed topography. Therefore, accurate remote flight control will be possible in real-time. Furthermore, the algorithm and the method of estimating shooting probability can be applied to pre-flight simulation and set of flight route.

Stereoscopic Video Display System Based on H.264/AVC (H.264/AVC 기반의 스테레오 영상 디스플레이 시스템)

  • Kim, Tae-June;Kim, Jee-Hong;Yun, Jung-Hwan;Bae, Byung-Kyu;Kim, Dong-Wook;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.450-458
    • /
    • 2008
  • In this paper, we propose a real-time stereoscopic display system based on H.264/AVC. We initially acquire stereo-view images from stereo web-cam using OpenCV library. The captured images are converted to YUV 4:2:0 format as a preprocess. The input files are encoded by stereo-encoder, which has a proposed estimation structure, with more than 30 fps. The encoded bitstream are decoded by stereo-decoder reconstructing left and right images. The reconstructed stereo images are postprocessed by stereoscopic image synthesis technique to offer users more realistic images with 3D effect. Experimental results show that the proposed system has better encoding efficiency compared with using a conventional stereo CODEC(coder and decoder) and operates with real-time processing and low complexity suitable for an application with a mobile environment.