• Title/Summary/Keyword: 입자 유동

Search Result 1,182, Processing Time 0.028 seconds

An experimental study of particle deposition from high temperature gas-particle flows (고온의 기체 입자 유동으로부터 입자부착 현상에 관한 실험적 연구)

  • 김상수;김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.501-508
    • /
    • 1987
  • Experimental studies of particle (TiO$\_$2/) deposition from the laminar hot gas particle flow (about 1565K) onto the cold wall surface (about 1215K-1530K) were carried out by the 'real time' laser light reflectivity method (LLRM) and the photographs of scanning electron microscope(SEM). The LLRM was used for the measurement of thermophoretic deposition rates of small particles (d$\_$p/<3.mu.m), and the photographs of SEM were used for determining what factors control the collection of particles having diameters ranging from 0.2 to 30 microns. Two phenomena are primarily responsible for transport of the particles across the laminar boundary layers and deposition: (1) particle thermophoresis (i.e. particles migration down a temperature gradient), and (2) particle inertial impaction, the former effect being especially larger factor of the particle deposition in its size over the range of 0.2 to 1 microns. And also, this study indicates that thermophoresis can be important for particles as large as 15 microns. Beyond d$\_$p/=16.mu.m, this effect diminishes and the inertial impaction is taken into account as a dominant mechanism of particle deposition. The results of present experiments found to be in close agreement with existing theories.

Numerical Simulation Study on Gas-Particle Two-Phase Jets in a Crossflow (I) -Two-Phase Jet Trajectory and Momentum Transfer Mechanism- (고체입자가 부상된 자유 횡분류 유동에 대한 전산모사 연구 (I) -2상 분류궤적과 운동량 전달기구-)

  • 한기수;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.252-261
    • /
    • 1991
  • A particle trajectory model to simulate two-phase particle-laden crossjets into two-dimensional horizontal free stream has been developed to study the variations of the jet trajectories and velocity variations of the gaseous and the particulate phases. The following conclusions may be drawn from the predicted results, which are in agreement with experimental observations. The penetration of the two-phase jet in a crossflow is greater than that of the single-phase jet. The penetration of particles into the free stream increases with increasing particle size, solids-gas loading ratio and carrier gas to free stream velocity ratio at the jet exit. When the particle size is large, the solid particles separate from the carrier gas , while the particles are completely suspended in the carrier gas for the case of small size particles. As the particle to carrier gas velocity ratio at the jet exit is less than unity, the particles in the vicinity of the jet exit are accelerated by the carrier gas. As the injection angle is increased, the difference of the particle trajectory from that of the pure gas becomes larger. Therefore, it can be concluded that the velocities and trajectories of the particle-laden jets in a crossflow change depending on the solids-gas loading ratio, particle size, carrier gas to free stream velocity ratio and particle to gas velocity ratio at the jet exit.

Study on Acoustic Attenuation due to Particles and Flow Turning in Rocket Motors (고체 입자와 유동방향 변환에 의한 로켓 모터 내 음향 감쇠에 대한 고찰)

  • Kim, Taejin;Sung, Hong-Gye;Seo, Seonghyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.838-844
    • /
    • 2015
  • This paper includes summarization and analysis of previous research results on acoustic attenuation due to particles and flow turning in rocket motors among various damping parameters. Particle damping is the most effective mechanism in suppressing high-frequency combustion instabilities occurring in rocket combustion chambers, which is dependent on the size and the mass fraction of particles. Relatively weak attenuation by flow turning compared to particle damping depends on the geometry of propellant and a combustion chamber. Pumping driving effects need to be taken into account when realizing vorticity generation on the propellant surface. However, its driving effects become cancelled out by flow turning loss when the propellant geometry is cylindrical.

Flow Characteristics Investigation of Gel Propellant with Al2O3 Nano Particles in a Curved Duct Channel (Al2O3 나노입자가 젤(Gel) 추진제의 곡관 유동특성에 미치는 연구)

  • Oh, Jeongsu;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.47-55
    • /
    • 2013
  • Curved duct channel flow characteristics for non-Newtonian gel fluid is investigated. A simulant gel propellant mixed by Water, Carbopol 941 and NaOH solution has been chosen to analyze the gel propellant flow behavior. Rheological data have been measured prior to the flow analysis where water-gel propellant and water-gel propellant with $Al_2O_3$ nano particles are both used. The critical Dean number examined by the numerical simulation in the U-shape duct flow reveals that although water-gel-nano propellants have higher apparent viscosity, the critical Dean number do show no notable difference for both the two gel propellant. It is found that the power-law index may be a dominant parameter in determining the critical Dean number and that the gel with particles addition may be more vulnerable to Dean instability.

Effects of Gas Injection on the Recovery of Copper Powder from Industrial Waste Water in Fluidized - Bed Electrolytic Reactors (유동층 전극반응기에서 기체의 유입이 산업폐수로부터 동입자의 회수에 미치는 영향)

  • Song, Pyung-Seob;Son, Sung-Mo;Kang, Yong;Kim, Seung-Jai;Kim, Sang Done
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.485-490
    • /
    • 2005
  • Effects of gas injectino on the copper recovery form industrial waste water in a fluidized-bed electrolytic reactor were investigated. Effects of gas injection on the individual phase holdup and efficiency of copper recovery for given operating variables such as liquid and gas velocity (0.1~0.4 cm/s), current density ($2.0{\sim}3.5A/dm^2$) and amount of fluidized solid particles (1.0~4.0 wt%) were examined. The solid particle, whose diameter and swelling density were 0.5 mm and $1100kg/m^3$, respectively, was made of polystylene and divinyl benzene. It was found that the holdup of gas and solid phases increased, but that of the liquid phase decreased with increasing velocity of gas injected into the reactor. With increasing gas and/or liquid velocity and increasing amount of fluidized particles is not needed, the rate of copper recovery increased to a maximum value of and subsequently decreased. The recovery rate of copper increased almost linearly with increasing current density in accordance with Faraday's law.

The Minimum Fluidization Velocity of Gaussian Distribution Particle System According to Standard Deviation (Gaussian 분포의 입자군의 표준편차에 따른 최소유동화속도)

  • Jang, Hyun Tae;Park, Tae Sung;Cha, Wang Seog
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.567-570
    • /
    • 2008
  • The present study investigated the applicability of the minium fludization velocity measuring method using linear regression analysis between the standard deviation of pressure fluctuation and gas velocity in multi-particle sand on a fluidized bed 0.109 in inner diameter. We measured minium fludization velocity according to the standard deviation of particle distribution in Gaussian distribution. The measured value compared with other researchers' equations. The minium fludization velocity derived from the linear regression analysis of the standard deviation of pressure fluctuation and pressure drop inside the bed. We also found that the minium fludization velocity of a multi-particle system using the standard deviation of pressure fluctuation must be measured at freely bubbling region.

Computational Simulation for Comparison of Flow Field and Particle Behavior in a Ceramic Candle Filter Housing with Different Inlet Type (세라믹캔들필터 집진장치에서의 입구유입방식에 따른 유동장 및 입자거동현상 비교 수치해석)

  • 박석주;이동근;임정환;박영옥
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.481-482
    • /
    • 2003
  • 세라믹캔들필터 집진장치의 형상 설계 시 장치내의 유동장의 균일도와 필터 표면으로의 입자 부하 현상이 중요한 설계 요소로 다루어지고 있다. 장치 내부의 유동 조건을 조절하여 필터 표면상에 도달하는 입자의 농도를 낮추거나 균일하게 유지시킬 경우, 부착된 입자층 두께의 성장으로 인한 압력손실의 증가율을 줄일 수 있고 이로 인하여 탈진 주기 또한 감소시킬 수 있다. 탈진 조작의 저감으로 인하여 필터의 수명 증대로 필터의 교체 시기를 연장시킬 수 있으므로 세라믹캔들필터 집진장치의 운전 및 유지보수비의 저감을 이룰 수 있다. (중략)

  • PDF

Characteristics of Axial Solid Hold-up Distribution in a CFB Riser with 3-Loops (3개의 순화고리를 갖는 순환유동층 상승관에서의 축방향 고체 체류랑 분포 특성)

  • 이종민;김재성;김시문;김종진;송규근
    • Journal of Energy Engineering
    • /
    • v.9 no.4
    • /
    • pp.348-357
    • /
    • 2000
  • 본 연구에서는 동해화력 순환유동층 보일러와 유사한 3개의 사이클론을 갖는 직사각형 구조의 순환유동층 반응기를 이용하여 동해화력 운전조건 -연소로 공기 속도, 일-이차 공기비, 전체 고체량(inventory), 입도 및 입도분포 등- 에 따른 축방향 고체 체류량 및 순환량 등의 수력학적 특성을 고찰하였다. 상승관에서의 공기유속(U$_{0}$)이 증가함에 따라, 또는 PA/[PA+SA]비가 증가함에 따라, 그리고 전체 고체량(inventory)이 증가함에 따라 고채 채류량 및 순환량은 증가하는 것으로 나타났다. 또한 넓은 입도 분포를 갖는 석탄 회재의 경우는 균일한 입도 분포의 입자들에 비해 입자 비산량 및 고체 순환량이 작을 것으로 나타났다. 한편, 층내에서의 고체 체루량 분포를 감소지수 a 및 K를 사용하여 나타낼 수 있었으며, a 및 K와 유속 및 입자간의 상관 특성치를 도출하여 유동 및 순환특성을 고찰하였다. 상기의 상관수는 균일한 입도의 모래에 비해 석탄회재가 비교적 큰 값을 나타내었으며, 상관수가 클수록 희박상 영역에서의 비산 및 고체 순환량이 작은 것으로 나타났다.다.

  • PDF

Experimental Study of Flow Fields around Cylinder Arrays Using PIV (PIV를 이용한 두 원주 주위의 유동장에 관한 실험적 연구)

  • Jeon, Wan-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.83-88
    • /
    • 1996
  • 두 인접한 원주 유동장을 입자 영상 속도계를 이용하여 연구하였다. 실험은 회류수조에서 행하였다. 흐름방향에 평행하게 배치하는 방법과 직교배열의 두가지 방법으로 원주를 배열하였다. 연구 결과는 다른 연구자의 결과와 일치함을 보여주었다. 본 연구를 통하여 입자 영상 속도계를 이용한 유동장 해석이 대단히 효과적임을 알 수 있었다.

  • PDF

Investigation on fluid-particle velocity double correlation in fluid- particle two-phase turbulent flows (유체에 입자가 부상된 2상난류운동에서 유체-입자속도 2차상관관계에 관한 연구)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1438-1449
    • /
    • 1988
  • An analysis of radiative heat transfer has been conducted on axisymmetric finite cylindrical media. It is assumed that the temperature in the media is uniformly distributed and the boundaries are diffusely emitting and reflecting at a constant temperature. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates just as in the combustion system. Exact numerical solutions are obtained by Gaussian quadrature method and compared with P-1 and P-3 approximation solutions to verify their engineering application limit. The effects of optical thickness, scattering albedo, wall emissivity and aspect ratio are investigated. The results show that P-3 approximation is found to be in good agreement with the exact solution.