• Title/Summary/Keyword: 입자추적기법

Search Result 92, Processing Time 0.027 seconds

Analysis of Capillary Flow in Open-Top Rectangular Microchannel (상판이 없는 직사각형 단면의 미세채널에서 모세관 유동 분석)

  • Park, Eun-Jung;Cho, Ji-Yong;Kim, Jeong-Chul;Hur, Dae-Sung;Chung, Chan-Il;Kim, Jung-Kyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Our study aims to understand the flow of liquid in an open-top rectangular microchannel that can be used in micro total analysis systems ($\mu$-TAS) because it has advantages in terms of light transmission and energy efficiency. We measured the liquid velocity using particle tracking technique and conducted a simulation with computational fluid dynamics by altering the area of channel cross section and channel length for the capillary-driven flow in the open-top rectangular microchannel. When liquid water drops to an entrance of the fabricated microchannel with a height of 20 μm and a width of 20 ${\mu}m$, it flows along the microchannel by only capillary force. In the wetting behavior of the liquid, important parameters of this flow are channel size, contact angle and liquid properties such as surface tension and viscosity, which are used to control the flow of liquid in the microchannel.

Performance Evaluation of Hydrocyclone Filter for Treatment of Micro Particles in Storm Runoff (Hydrocyclone Filter 장치를 이용한 강우유출수내 미세입자 제거특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong;Hong, Sung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1007-1018
    • /
    • 2009
  • Hydrocyclone is widely used in industry, because of its simplicity in design, high capacity, low maintenance and operational cost. The separation action of a hydrocyclone treating particulate slurry is a consequence of the swirling flow that produces a centrifugal force on the fluid and suspended particles. In spite of hydrocyclone have many advantage, the application for treatment of urban stormwater case study were rare. We conducted a laboratory scale study on treatable potential of micro particles using hydrocyclone filter (HCF) that was a combined modified hydrocyclone with perlite filter cartridge. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particles sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin, road sediment, commercial area manhole sediment, and silica gel particles. Experimental studies have been carried out about the particle separation performance of HCF-open system and HCF-closed system. The principal structural differences of these HCFs are underflow zone structure and vortex finder. HCF was made of acryl resin with 120 mm of diameter hydrocyclone and 250 mm of diameter filter chamber and overall height of 800 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The operated maximum of surface loading rate was about 700 $m^3/m^2$/day for HCF-open system, and 1,200 $m^3/m^2$/day for HCF-closed system. It was found that particle removal efficiency for the HCF-closed system is better than the HCF-open system under same surface loading rate. Results showed that SS removal efficiency with the HCF-closed system improved by about 8~20% compared with HCF-open system. The average removal efficiency difference for HCF-closed system between measurement and CFD particle tracking simulation was about 4%.

Simulation of Solid Particle Sedimentation by Using Moving Particle Semi-implicit Method (고체 입자형 MPS법을 이용한 토사물 퇴적 시뮬레이션)

  • Kim, Kyung Sung;Yu, Sunjin;Ahn, Il-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.119-125
    • /
    • 2018
  • The particle based computational fluid dynamics (CFD) method, which follow Lagrangian approach for fluid dynamics, fluid particle behavior by tracking all particle calculation physical quantities of each particle. According to basic concept of particle based CFD method, it is difficult to satisfy continuum theory and measure influences from neighboring particle. Article number density and weight function were used to solve aforementioned issue. Difficulties continuum mean simulate non-continuum particles such as solid including granular and sand. In this regard, the particle based CFD method modified solid particle problems by replacing viscous and surface tension forces friction and drag forces. In this paper, particle interaction model for solid particle friction model implemented to simulate solid particle problems. The broken dam problem, which is common to verify particle based CFD method, used fluid or solid particles. The angle of repose was observed in the simulation results the solid particle not fluid particle.

A Study on CFD Methodology of the Performance Predictionfor the UV Disinfection Reactor (자외선 소독기 성능 예측을 위한 CFD 해석 기법 연구)

  • Kim, Hyunsoo;Bak, Jeonggyu;Lee, Kunghyuk;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.44-51
    • /
    • 2014
  • The disinfection method using UV has emerged as photodissociation in water disinfection. In order to predict performance for UV disinfection, CFD analysis was performed due to saving cost. Most CFD studies of UV reactor have used particle tracking method. However it demands additional analysis time, computing resource and phase besides working fluid. In this paper, pathogenic microorganisms' route is assumed to streamline of fluid to save computing time. the computational results are in good agreement with experimental results. The results of streamline method are compared with the particle tracking method. In conclusion, the effectiveness of streamline method for UV disinfection are confirmed.

Leap-Motion Based Tracking Framework for Practice and Analysis of User's Arm Muscle (확장현실에서 사용자의 팔 근육 연습 및 분석을 위한 립모션 기반 추적 프레임워크)

  • Park, Seonga;Park, Soyeon;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.469-472
    • /
    • 2020
  • 본 논문에서는 립모션 디바이스를 이용하여 손의 움직임을 계산하고 이로부터 저글링 운동 동작뿐 만 아니라 이것을 이용한 팔 근육을 연습할 수 있는 새로운 프레임워크를 제안한다. 제안된 방법은 실시간으로 동작하기 때문에 사용자의 동작에 맞춰진 분석을 할 수 있다. 본 논문의 프레임워크는 크게 세 부분으로 나누어진다. 우선, 1) 사용자가 공을 튕기는 이벤트 트리거를 손목 움직임으로부터 정의한 뒤, 2) 사용자의 손 위치를 기준으로 저글링 형태의 움직임을 공에 매핑시키기 위한 포물선 기반 입자 기법을 제안한다. 마지막으로, 3) 손목의 굽힘을 기반으로 근육의 활동 양을 시각화할 수 있는 기법을 제안한다. 결과적으로 본 논문의 프레임워크를 이용하면 실시간 저글링 게임을 할 수 있을 뿐만 아니라 사용자의 팔 근육 움직임을 실시간으로 분석할 수 있다.

  • PDF

Application of PIV in the Flow Field Over a Fixed Dune Bed (언덕이 있는 하상유동 계측을 통한 PIV기법의 수력학적 적용연구)

  • Hyun B. S.;Balacharldar R.;Patel V, C.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.10-15
    • /
    • 2002
  • The assessment of PIV to measure the mean velocity and turbulence was carried out over a train of fixed two-dimensional dunes. The agreement between the PIV and LDV is good enough even in regions of flow reversals and high shear. Though limited in the wall normal direction field-of-view, PIV provides instantaneous flow fields, which reveal the complex nature of flow over dunes, as well as more sophisticated analyses such as two-point space correlation and quadrant analysis with a reasonable accuracy The present study is expected to be directly applied to more complex flow such as sediment transport.

  • PDF

A CPU and GPU Heterogeneous Computing Techniques for Fast Representation of Thin Features in Liquid Simulations (액체 시뮬레이션의 얇은 특징을 빠르게 표현하기 위한 CPU와 GPU 이기종 컴퓨팅 기술)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.11-20
    • /
    • 2018
  • We propose a new method particle-based method that explicitly preserves thin liquid sheets for animating liquids on CPU-GPU heterogeneous computing framework. Our primary contribution is a particle-based framework that splits at thin points and collapses at dense points to prevent the breakup of liquid on GPU. In contrast to existing surface tracking methods, the our method does not suffer from numerical diffusion or tangles, and robustly handles topology changes on CPU-GPU framework. The thin features are detected by examining stretches of distributions of neighboring particles by performing PCA(Principle component analysis), which is used to reconstruct thin surfaces with anisotropic kernels. The efficiency of the candidate position extraction process to calculate the position of the fluid particle was rapidly improved based on the CPU-GPU heterogeneous computing techniques. Proposed algorithm is intuitively implemented, easy to parallelize and capable of producing quickly detailed thin liquid animations.

Laboratory experiment of evolution of rip current according to the duration of successive ends of breaking wave crests (연속 쇄파선 끝단 지속시간에 따른 이안류 발달 수리실험 연구)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • The experiment of rip current at successive ends of breaking wave crests was conducted in a laboratory wave basin, and its time-varying evolution according to incident wave durations was observed by using ortho-rectified images. The experiment utilized the generation of a quasi nodal line of the honeycomb-pattern waves (i.e., intersecting wave trains) formed by out-of-phase motion of two piston-type wave makers arranged in the transverse direction, instead of the original honeycomb pattern waves which are generated when two wave trains propagate with slightly different wave directions. The particle moving distance and velocity caused by the rip current were measured by using the particle tracking technique. As a result, the rip current was survived for a while even without incident waves after its generation due to several successive ends of wave crests, and it moved the particles further out to sea.

PIV Measurement of Circular Cylinder Wake Using Vortex Tracking Phase-Average Technique (와추적 위상평균 기법을 이용한 원주후류의 PIV측정)

  • Kim, Gyeong-Cheon;Yun, Sang-Yeol;Kim, Sang-Gi;Bu, Jeong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.915-922
    • /
    • 2001
  • A new phase-average technique using instantaneous velocity fields obtained by a PIV method has been developed. The technique tracks vorticity centers and estimates the value of circulation for a chosen domain. The locations of vortex-centers and the magnitudes of circulation are matched together then showing a sine wave feature due to the periodic vortex shedding from the circular cylinder. Ensemble averaged and phase averaged velocity fields are successfully measured for the circular cylinder wake where Reynolds number is 3900 based on free stream velocity and cylinder diameter. The convection velocities of the vortices center and the vortex shedding frequency were measured by a single hot-wire probe.

Fall Velocity Measurement in the Turbulent Flow Using Image Analysis Method (영상해석 기법을 이용한 난류 흐름 중 침강속도의 측정)

  • Yun, Sang-Hun;Yu, Gwon-Gyu;Yun, Byeong-Man
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.745-751
    • /
    • 2001
  • Fall velocities of sand particles in the turbulent flow are analyzed through measurements using PTV. PTV is believed to be the only instrument to measure the fall velocity in the turbulent flow, since it can trace the individual particle. The method is verified by comparison with existing formula for still-water case. The experimental results show that the fall velocity in the turbulent flow decreases compared with that in still water, and decreases by 40% as the turbulent intensity normalized by the friction velocity increases upto 1.

  • PDF