• Title/Summary/Keyword: 입자(particulate)

Search Result 858, Processing Time 0.027 seconds

A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System (자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구)

  • Lee, Jin-Wook;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

Emission Characterization of Particulate Matters According to the Types of Wastes from Industrial Waste Incinerator (산업폐기물 소각시설에서 폐기물 유형에 따른 입자상물질의 배출특성)

  • Park, Jeong-Ho;Suh, Jeong-Min;Jo, Jeong-Gu;Ryu, Jae-Yong;Han, Seong-Jong
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1225-1230
    • /
    • 2007
  • The emissions characteristics of particulate matters(PM) according to the types of wastes from industrial waste incinerator of 800 kg/hr treatment capacity were investigated. For this study, the incinerate waste are as follows; waste resin, waste wood, waste urethane, waste gunny, and waste paper. The particulate samples were collected to be emitted in stack and air pollution control(both cyclone and bag filter). In stack, the concentrations of PM were in the range of 2.61 to $26.51 mg/Sm^3$ and the major chemical species were C, Si, Cl, K, Na, Ca in all the wastes. In cyclone fly ash, the mean content of heavy metal were in the order of Fe > Zn > Pb > Cu > Mn > Cr > Ni > Cd > As > Hg and the heavy metal content of waste resin were Zn 34,197.5 mg/kg, Fe 27,587.6 mg/kg, Pb 6,055.8 mg/kg, respectively. In bag filter fly ash, the mean content of heavy metal were in the order of Zn > Pb > Fe > Cu > Mn > Cd > Cr > Ni > As > Hg and the heavy metal content of waste wood were Pb 36,405.2 mg/kg, Fe 15,762.9 mg/kg, Cu 9,989.5 mg/kg, Cd 2,230.1 mg/kg, respectively. Comparing the heavy metal content of both cyclone and bag filter, in cyclone, the Cr, Fe, Ni content were higher than in bag filter and the Cd, Cu, Hg content were lower than in bag filter.

Reduction Effect of Air Cleaner on Particulate Matters and Biological Agents in a Swine Facility (공기정화기 적용에 따른 돈사 작업장내 입자상 물질 및 생물학상 물질 저감 효과에 관한 연구)

  • Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • Objectives: This on-site study was performed to evaluate the reduction efficiency of an air cleaner on particulate matters and biological agents in a swine facility. Materials and Methods: Particulate matter was measured using a real-time monitoring recorder and biological agents were sampled with a one-stage impactor and then analyzed based on the microbial culture method. An experimental process for the reduction effect on airborne pollutants through air cleaner operation consisted of three conditions: no treatment, wet scrapper by water spray and wet scrapper by disinfectant spray. Results: Geometric mean levels of particulate matter(TSP, $PM_{10}$, $PM_{2.5}$ and $PM_1$) were presented at $1,608{\mu}g/m^3$, $1,373.8{\mu}g/m^3$, $401.8{\mu}g/m^3$ and $144.5{\mu}g/m^3$ for no treatment; $1,503{\mu}g/m^3$, $1,017{\mu}g/m^3$, $159.4{\mu}g/m^3$ and $69.8{\mu}g/m^3$ for wet scrapper by water spray; and $1,222.17{\mu}g/m^3$, $477.17{\mu}g/m^3$, $33.2{\mu}g/m^3$ and $11.1{\mu}g/m^3$ for wet scrapper by disinfectant spray, respectively. In the case of biological agents, the geometric averaged concentrations of total airborne bacteria and fungi were as follows: $45,371cfu/m^3$ and $13,474cfu/m^3$ for no treatment, $43,286cfu/m^3$ and $8,610cfu/m^3$ for wet scrapper by water spray, and $2,440cfu/m^3$ and 1,867 cfu/ for wet scrapper by disinfectant spray, respectively. Regardless of particulate matter and biological agent, the highest concentrations were found for no treatment, while the lowest concentrations were found with wet scrapper by disinfectant spray. Conclusions: Based on the results obtained from this on-site evaluation, there was a significant reduction effect on particulate matter and biological agents through the application of an air cleaner in this study.

Effect of Methane Production from Pig Manure Slurry According to The Solids Concentration and The Crushing Solids of Pig Manure Slurry (돼지분뇨 슬러리중의 고형물 농도수준과 분쇄 처리가 메탄 생성에 미치는 효과)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun;Lee, Dong-Hyun;Cho, Won-Mo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.74-85
    • /
    • 2015
  • Recently, the number of anaerobic digestion facility for livestock manure is on the rise in Korea. All of the livestock manure anaerobic digestion facilities in operation use pig manure slurry as a substrate for anaerobic digestion. Generally, pig manure slurry is composed of 97% water and 3% solids. The particulate matter, such as corn in the form of particles that is undigested by pig is contained in the pig manure slurry. Particulate matter is a factor reducing the effectiveness of biogas production in the anaerobic digestion process. In this study, mechanical grinding treatment was applied to analyze the effect of methane production from pig manure slurry by reducing the particle size of the slurry. On the other hand, the effect of the solid concentration levels on methane production and methane content of the biogas was analyzed. The fine particle concentration in the pig manure slurry was increased by the mechanical grinding treatment. And methane production and methane content of the biogas were higher in grinded pig manure slurry than untreated raw slurry.

Study on the Total Analyses of Cake Filtration with Filtration-Permeation Method (여과-투과 방법에 의한 케이크 여과의 전체적인 해석)

  • Yim, Sung-Sam;Song, Yun-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.74-81
    • /
    • 2007
  • Using the new experimental method named "filtration-permeation", the average specific resistances which plays an important role in designing cake filtration apparatus and the development of cake filtration theory were measured in this study. By this new experimental method, two kinds of average specific resistances are measured. The one from the filtration is named 'filtration average specific resistance $\alpha_{avf}$, and the other from the permeation of particle eliminated water through the pre-formed cake is named 'permeation average specific resistance $\alpha_{avf}$. The "filtration-permeation" method is applied to three different kind of suspensions(i.e. particulate suspension, pre-flocculated suspension and macro-molecule suspension) to obtain filtration and permeation average specific resistances. A theoretical procedure of cake filtration is studied based on the values of permeation average specific resistance. With the study it was concluded that the influence of the sedimentation during particlulate filtration operation could not be ignored as commonly used. And the solid content of suspension, S, which also regarded usually as constant, changes during filtration of particles. It is also verified that the exact value of solid content of cake for floe filtration could not be obtained. These significant problems are all solved by our new "filtration-permeation" experimental method.

Heat Transfer in Radiatively Participating Gas-Particle Cavity Flows (輻射가 關與하는 氣體-固體粒子 캐비티 流動에서의 熱傳達)

  • 이종욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.551-560
    • /
    • 1988
  • Gas-particle two phase flow and heat transfer in a cavity receiving thermal radiation through selectively transparent walls have been analyzed by a finite difference method. Particles injected from the upper hole of the cavity are accelerated downward by gravity and exit through the lower hole while they absorb, emit and scatter the incident thermal radiation. Gas phase is heated through convection heat transfer from particles, and consequently buoyancy induced flow field is formed. Two-equation model with two-way coupling is adopted and interaction terms are treated as sources by PSI-Cell method. For the particulate phase, Lagrangian method is employed to describe velocities and temperatures of particles. As thermal radiation is incident upon horizontally, radiative heat transfer in the vertical direction is assumed negligible and two-flux model is used for the solution of radiative heat flus. Gas phase velocity and temperature distributions, and particle trajectories, velocities and temperatures are presented. The effects of particle inlet condition, particle size, injection velocity and particle mass rate are mainly investigated.

Nano-Composite's Mechanical and Radioactive Barrier Characteristics by Nano Size CNT & Graphite Particles Alignment (CNT와 Graphite 나노/마이크로 입자 배열에 의한 나노복합재의 제작과 기계적 강성 및 방사능 차폐 특성 평가)

  • Cho, Hee-Keun
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.355-362
    • /
    • 2013
  • Carbon particle based nanocomposites have been studied. Nanocomposites containing CNT and graphite particles were manipulated by aligning the micro/nano-size particles with electric field. Electric field is applied to the suspension of epoxy matrix and particulate inclusions in order to align them along the direction of the electric field. Particles aligned in a uniform direction act as a fiber in a CFRP composite. The mechanical strength and physical characteristics highly depend on particles' distribution pattern and amount. In this study, the characteristics of radioactive barrier are emphasized, which has been rarely discussed in the literature. A number of sample coupons were tested to verify their performance. The procedure of manufacturing nanocomposites by means of extremely small size particle alignment is presented in sequence. Several physical and structural performances of composites containing aligned and randomly distributed particles were compared. The results show particle alignment is very effective to enhance directional strength and radioactive barrier performance.

Effect of Hydrogen Addition on the Conversion of Hydrocarbon Gas to Pyrocarbon Nanoparticles (탄화수소가스 열분해법에 의한 탄소나노입자 생성에 있어서 수소의 영향에 관한 연구)

  • Kim, Soo Hyung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1025-1028
    • /
    • 2008
  • With the assistance of thermal pyrolysis process for hydrocarbon gases, the formation and growth of particulate carbon was systematically investigated as a function of temperature in the gas phase. The yield and average size of pyrocarbon particles were found to increase with increasing pyrolysis temperature. The difference in the yield of carbon particles generated by pyrolizing acetylene and ethylene gas posed a question about the role of hydrogen in the pyrolysis of hydrocarbon gases. In order to reveal the role of hydrogen, controlled amount of hydrogen was added to the acetylene pyrolysis, and then hydrogen addition was observed to suppress the formation and growth of carbon particles. One can control the size of pyrocarbon particles by controlling the hydrogen gas addition.