• Title/Summary/Keyword: 입사파

Search Result 621, Processing Time 0.026 seconds

Ultrasonic Backscattering on Painted Rough Surface at near Rayleigh Angle (레일리각 근처에서 도색된 거친 표면으로부터 후방 산란된 초음파)

  • Kwon, Sung-D.;Kwon, Yong-G.;Yoon, Seok-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The angular dependence (or profile) of backscattered ultrasound was measured for steel specimens with a range of surface roughness, $1{\sim}71{\mu}m$. Backscattering profiles at or near the Rayleigh angle still showed roughness dependence while the assessment of surface roughness via normal profile became impossible due to the paint layer masking the roughness. The peak amplitude directly radiated at the Rayleigh angle was proportional to the surface roughness, while the averaged peak amplitude radiated from the backward propagating Rayleigh wave, produced by reflection at a corner, was inversely proportional. In the painted specimens, the linearity of direct backward radiation with the roughness was observed even at the roughness of less than three hundredths of a wavelength, and the abnormal multiple bark reflection caused by periodic roughness disappeared.

Analysis of the TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Plane (접지된 유전체 평면위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating on a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of dielectric layer, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. The reflected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies[7]. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

  • PDF

Wideband Optical Phase Conjugator using HNL-DSF in WDM Systems with Path-Averaged Intensity Approximation Mid-Span Spectral Inversion (경로 평균 강도 근사 기법의 MSSI를 채택한 WDM 시스템에서 HNL-DSF를 갖는 광대역 광 위상 공액기)

  • Lee, Seong-Real;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.14-21
    • /
    • 2003
  • We investigated the optimum pump light power compensating distorted WDM signal due to both chromatic dispersion and self phase modulation (SPM). The considered system is $3{\times}40$ Gbps intensity modulation direct detection (IM/DD) WDM transmission system with path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber (HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM transmission, and the excellent compensation is obtained when the pump light power of HNL-DSF OPC was selected to equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length. By this approach, it is verified the possibility to realize a long-haul high capacities WDM system by using PAIA MSSI compensation method, which have HNL-DSF OPC with optimal pump light power depending on transmission length.

  • PDF

Interaction Analysis between Waves and Caissons by Damping Zone Effect for Installing New Caisson on Old Caisson Breakwater (기존 케이슨방파제에 신규 케이슨 추가설치 시 댐핑존 영향에 따른 유체와 케이슨들간의 상호작용 평가)

  • Park, Min Su;Kim, Young Taek;Park, Sangki;Min, Jiyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.5
    • /
    • pp.156-168
    • /
    • 2022
  • The design and construction are carried out to improve the structural stability of caisson breakwaters by installing new caissons on the front or rear of old caissons. The wave forces acting on caisson are excessively calculated by the resonance of fluid existing between the old caisson and the new caisson in the numerical analysis using potential flow. In this study, we used the damping zone option in ANSYS AQWA program to analyze the wave forces acting on individual caissons according to the interaction effects between the incident wave and the caisson. By applying the damping zone option to the fluid in which resonance occurs, the wave forces acting on individual caissons were calculated by the change of damping factor. In addition, the wave force characteristics acting on individual caissons were analyzed for the different distances between caissons in the frequency domain analysis.

Analysis of Defect Signals Inside Glass Fiber Reinforced Polymer Through Deconvolution of Terahertz Wave (테라헤르츠파의 디컨벌루션을 통한 유리섬유 복합재 내부 결함 신호 분석)

  • Kim, Heon-Su;Park, Dong-Woon;Kim, Sang-Il;Lee, Jong-Min;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.8-12
    • /
    • 2022
  • Analysis of defect signals inside glass fiber reinforced polymer (GFRP) was conducted through deconvolution of terahertz (THz) wave. The GFRP specimen with internal defects was manufactured and the THz signal was measured through the reflection mode of the Terahertz Time-Domain Spectroscopy (THz-TDS) system. For deconvolution of the measured THz signal, the peak position of the THz signal was amplified through Normalized Cross Correlation (NCC) of the incident and detected THz signals. The position and intensity of the amplified peak were extracted as impulse, and the extracted signal of the impulse position was removed from the THz original signal. By repeating the process, the critical impulses, which represent boundary of the specimen, were derived. The deconvolution process was verified by confirming that the original THz signal without noise can be restored through the convolution of the critical impulses and the incident signal. From the derived critical impulses, the thickness of the internal defect in the GFRP was calculated through the detection time of impulses within 15 ㎛ accuracy.

Frequency Domain Analysis for Dynamic Response of Floating Structures Subject to Wave Loading (파랑하중을 받는 부유식 구조물의 동적거동에 대한 주파수영역 해석)

  • Kwon Jang Sub;Paik In Yeol;Park Jung Il;Chang Sung Pil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.138-148
    • /
    • 2005
  • Dynamic response of floating structures such as floating body and floating bridges subject to wave load is to be calculated in frequency domain. Added mass coefficient, damping coefficient and wave exciting force are obtained numerically from frequency domain formulation of linear potential theory and boundary element method for a floating body which is partially submerged into water and subjected to wave force. Next, the equation of motion for the dynamic behavior of a floating structure which is supported by the floating bodies and modeled with finite elements is written in frequency domain. hker a hemisphere is analyzed and compared with the published references as examples of floating bodies, the hydrodynamic coefficients for a pontoon type floating body which supports a floating bridge are determined. The dynamic response of the floating bridge subject to design wave load can be solved using the coefficients obtained for the pontoons and the results are plotted in the frequency domain. It can be seen from the example analysis that although the peak frequency of the incoming wave spectrum is near the natural frequency of the bridge, the response of the bridge is not amplified due to the effect that the peak frequency of wave exciting force is away from the natural frequency of the bridge.

Electromagnetic Modeling of High Altitude Electromagnetic Pulse Coupling into Large-Scale Underground Multilayer Structures (다층 지하 구조물로의 고고도 전자기파(HEMP) 커플링 현상에 대한 전자기적 모델링)

  • Kang, Hee-Do;Oh, Il-Young;Kim, Jung-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.392-401
    • /
    • 2012
  • This paper gives a electromagnetic coupling mechanism of the high altitude electromagnetic pulse (HEMP) into large- scale underground multilayer structures using analytic and numerical methods. The modeling methods are firstly addressed to the HEMP source which can be generated by intentional nuclear explosion. The instantaneous and intense electromagnetic pulse of the HEMP source is concerned from DC to 100 MHz band, because the power spectrum of the HEMP is rapidly decreased under -30 dB over the 100 MHz band. Through this range, a penetrated electric field distribution is computed within the large-scale underground multilayer structures. As a result, the penetrated electric field intensities at 0.1 and 1 MHz are about 10 and 5 kV/m, respectively. Therefore, additional shielding techniques are introduced to protect buried structures within the large-scale underground structures such as high-lossy material and filtering structures (wire screen).

Wave Control by Bottom-Mounted and Fluid-Filled Flexible Membrane Structure (유체가 채워진 착저신 유연막 구조물에 의한 파랑제어)

  • 조일형;강창익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.139-148
    • /
    • 2000
  • In this paper, the interaction of oblique incident waves with a bottom-mounted and fluid-filled flexible membrane structure is investigated in the frame of linear hydro-elastic theory. The static shape of a membrane structure containing the fluid of a specific density is initially unknown and must be calculated before the hydrodynamic analysis. To solve hydrodynamic problem, the fluid domain is divided into the inner and outer region. The inner solution based on discrete membrane dynamic model and simple-source distribution over the entire fluid boundaries is matched to the outer solution ba~ed on an eigenfunction expansion method. The numerical results were compared to a series of Ohyama's experimental results. The measured reflection and tran¬smission coefficients reasonably follow the trend of predicted values. Using the computer program developed, the performance of a bottom-mounted and fluid-filled flexible membrane strocture is tested with various system parameters (membrane shape, internal pressure, density ratio) and wave characteristics (wave frequencies, incident wave angle). It is found that a bottom-mounted and fluid-filled flexible membrane structure can be an effel;tive wave barrier if properly designed.

  • PDF

Evaluation of Fatigue Degradation in SUS316L Using Nonlinear Ultrasonics (초음파의 비선형 특성을 이용한 SUS316L 재료의 피로 열화 평가에 관한 연구)

  • Choi, Ik-Hwang;Baek, Seung-Hyun;Lee, Tae-Hun;Jhang, Kyung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • This study evaluated the fatigue degradation in a SUS316L specimen using the nonlinear ultrasonic method. The nonlinearity of the ultrasonic wave was estimated by a relative nonlinear parameter defined as the ratio of the amplitudes for the fundamental wave to the second harmonic wave. In the experiment, a measurement system with contact transducers was constructed; reliable measurements were assured by keeping measurement conditions consistent and reducing extra harmonics generated in the measurement system. Two types of SUS316L specimen were used in experiments; a rotating bar fatigue specimen and a tensile fatigue specimen. The fatigue condition used was high cycle fatigue. The former specimen had a cylindrical shape and was used to observe the change in the nonlinear parameter after fatigue accumulation in a specimen. The latter was a plate-shaped specimen and was used to confirm the change in the nonlinear parameter at the position where the fatigue stress was concentrated. The measured nonlinear parameter showed a strong correlation to the damage level in both fatigue tests.

Application of Three-Dimensional Numerical Irregular wave Tank(3D-NIT) Model (3차원 불규칙 수치파동수조(3D-NIT) 모델의 적용성에 관한 연구)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.388-397
    • /
    • 2012
  • In this study, 3D-NIT(3-Dimensional Numerical Irregular wave Tank) model in which regular wave as well as stable irregular wave can be generated in 3-dimensional numerical irregular wave tank was proposed. To verify validity, the following steps need to be conducted: 1) comparative analysis between calculated waveforms and targeted waveforms at the wave generating point, 2) comparative analysis with the existing experimental values of overtopping volume estimated, targeting shore protection structures installed on a slope bed, 3) comparison with the existing numerical and hydraulic experimental results through application in the analysis on the wave deformation by structures and wave force acting on the vertical cylindrical structures. Based on the results, characteristics of the breaking wave forces according to incident waves and interval distance of structures were identified through application of 3D-NIT model in the analysis on the breaking wave forces acting on the cylindrical structures installed on a slope bed, and reflection and overtopping was reviewed through application in the special breakwaters on the domestic fields. The numerical results obtained the 3D-NIT model are in good agreement with experimental results, and its applicaion to the complex-shpaed coastal structures is verified.