Kim, Se-Jin;Jeon, Hyung-Suk;Joo, Young-Hoon;Park, Jin-Bae
Proceedings of the KIEE Conference
/
2009.07a
/
pp.1845_1846
/
2009
본 논문에서는 특징 벡터를 이용한 강인한 물체 추적 방법을 제안한다. 먼저, 초기 이동 물체의 움직임 영역을 추출하고, KLT알고리즘을 입력 영상에 적용시켜 특징 벡터들을 추출한다. 초기 추출된 이동 물체의 움직임 영역에 추출된 특징 벡터를 적용시켜 1차 정규화 한다. 그 후, RGB 칼라모델과 HSI 칼라모델을 이용하여 이동 물체에 대한 Blob 영역을 설정하고 설정된 Blob 영역에 대해 1차 특징벡터를 Snake 알고리즘으로 동정하여 2차 정규화 과정을 마무리 한다. 최종 정규화 된 특징 벡터를 Particle filter에 입력 데이터로 이용하여 이동 물체를 추적 한다. 마지막으로, 복잡한 환경에서 실험을 통해 그 응용 가능성을 증명한다.
Proceedings of the Korea Information Processing Society Conference
/
2002.11a
/
pp.381-384
/
2002
특징 추출은 입력 데이터를 인식이 더 잘 될 수 있도록 변환된 영역의 특징 벡터로 변환하는 과정으로 볼 수 있다. 특징벡터가 갖추어야 할 주요 특성은 손실되는 정보량이 가능한 적어야 된다는 것이다. 또한, 높은 인식률을 얻기 위해서, 동일 클래스에 포함된 특징 벡터의 편차는 적도록 만들어야 한다. 본 논문에서는, 방향각 누적 특징을 기반으로 개발된 몇 가지 새로운 특징을 필기 숫자 인식에 적용하였다. 특징을 추출하기 위하여 입력된 이진 영상의 비선형 정규화, 영상의 크기에 의한 특징 정규화, 영상의 전경 영역에 의한 특징 정규화 등의 여러 가지 방법이 적용되었다. 실제 우편물에서 추출된 필기 숫자 데이터베이스를 실험에 사용하였으며, 제안된 방법이 필기 숫자 인식에 효과적으로 적용될 수 있다는 것을 결과에서 보여주고 있다.
Recently, many games provide data related to the users' game play, and there have been a few studies that predict opponent move by combining machine learning methods. This study predicts opponent move using match data of a real-time strategy game named ClashRoyale and a multi-label classification based on machine learning. In the initial experiment, binary card properties, binary card coordinates, and normalized time information are input, and card type and card coordinates are predicted using random forest and multi-layer perceptron. Subsequently, experiments were conducted sequentially using the next three data preprocessing methods. First, some property information of the input data were transformed. Next, input data were converted to nested form considering the consecutive card input system. Finally, input data were predicted by dividing into the early and the latter according to the normalized time information. As a result, the best preprocessing step was shown about 2.6% improvement in card type and about 1.8% improvement in card coordinates when nested data divided into the early.
Kim, Jae-Yong;Woo, Young-Woon;Yoon, Seok-Hyun;Kim, Kwang-Baek
Proceedings of the Korean Society of Computer Information Conference
/
2010.07a
/
pp.421-423
/
2010
본 논문에서는 ART2 알고리즘을 이용하여 잠금 상태에서 스마트폰의 어플리케이션을 쉽고 빠르게 구동하기 위한 방법을 제안한다. 자신이 원하는 그림과 설치되어 있는 어플리케이션과의 대응 테이블을 만들기 위하여 학습 어플리케이션을 실행한다. 학습 어플리케이션의 동작 순서는 어플리케이션 실행 후 화면 하단에서 빠른 실행을 하고자 하는 어플리케이션을 선택하고 좌측상단에 위치하고 있는 입력 부분에 그림을 그린 후, 학습 버튼을 클릭한다. 그려진 그림의 배경은 0으로 그림은 1로 변환하고 ART2의 입력으로 사용할 수 있도록 일정한 크기로 정규화한다. 정규화 된 데이터를 팽창 연산을 통하여 학습에 용이하도록 최외각 픽셀을 확장하여 ART2의 입력 데이터로 적용한다. 학습이 끝난 후, 잠금 상태에서 액정 윗부분에 학습된 것과 같은 모양의 그림을 그리면 해당 어플리케이션이 실행된다. 제안된 방법은 기존의 방식인 잠금 해제 후, 어플리케이션을 탐색하고, 해당 어플리케이션을 실행하는 3 단계로 된 방식을 1 단계로 줄이기 때문에 원하는 어플리케이션을 실행하는데 시간이 적게 소요되는 장점이 있다.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.98-104
/
1996
일반적으로 비선형 형태 정규화 과정은 필기체 문자에서 발생하는 형태 변형을 보상하기 위하여 사용되며, 현재까지 이진 영상에 대한 비선형 형태 정규화 방법들이 제안되었다. 그러나 현존하는 대부분의 문자 인식 시스템은 스캐너를 통하여 입력된 명도 문자영상을 이진화하여 사용하고 있기 때문에 이진화로 인해 야기되는 물자 영상에 대한 정보 유실 및 잡영 첨가 현상이 비선형 형태 정규화 과정에 누적되어 결과적으로 좋은 특징 추출 결과를 기대하기 어려운 실정이다. 본 연구에서는 이진화에 의한 정보의 손실을 최소화시키고, 필기체 문자에서 발생하는 다양한 형태 변형을 효과적으로 보상할 수 있는 명도 영상에서의 비선형 형태 정규화 방법을 제안한다. 제안된 명도 영상에서의 비선형 형태 정규화 방법들의 성능을 객관적으로 검증하기 위하여 처리 시간 및 복잡도 등을 기준으로 평가하였으며, 다양한 명도 한글 글씨 데이터에 대한 실험을 통하여 이진 영상에서의 비선형 형태 정규화 방법에 비해 제안된 방법이 변형이 심한 한글 글씨 데이타의 품질을 개선하는데 있어서 매우 효율적임을 확인할 수 있었다.
본 논문에서는 DC 억압능력이 없거나 부족한 코드에 만족할 만한 DC 억압능력을 갖도록 하기 위한 멀티모드코드 방식을 제안한다. 제안한 멀티모드코드는 데이터열의 다중화를 위해 Pseudo Scrambling Technique를 사용하며, 다중화 된 데이터열의 변조를 위해 DC-free RLL(d, k) Code를 사용하는 특징을 가진다. 제안한 방법에서는 Sync 코드워드의 패리티를 다중화 정보로 사용하여 입력데이터를 2개의 데이터 열로 다중화하고, 2개로 다중화 된 데이터 열에 대해 DC-free RLL(d, k) Code를 사용하여 코드워드로 변환하며, 코드워드로 변환된 2 개의 코드워드 열에 대해 DC 성분이 적은 코드워드 열 하나를 선택하여 변조 스트림으로 출력한다. 본 논문에서는 Sync 코드워드의 패리티를 다중화 정보로 사용하여 별도의 Redundancy를 부가하지 않고 DC 억압성능을 향상시킬 수 있었다.
본 논문에서는 기울기하강과 동적터널링이 조합된 학습알고리즘의 다층신경망을 이용한 고신회성의 회귀분석 모델을 제안하였다. 기울기하강은 빠른 수렴속도의 최적화가 가능하도록 하기 위함이고, 동적터널링은 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치를 설정하여 전역최적해로 수렴되도록 하기 위함이다. 또한 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 회귀분석 모델의 제약도 동시에 해결하였다. 제안된 기법의 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 역전과 알고리즘의 신경망이나 주요성분분석에 의한 차원을 감소시키지 않은 학습패턴을 이용한 신경망보다 각각 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 또한 학습패턴의 영평균 정규화로 회귀용 신경망의 성능을 더욱 더 개선하였다.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.15
no.3
/
pp.159-165
/
2003
The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. To detect partial faults of the air-conditioning system, a neural network algorithm may be used. In this study, the neural network algorithm using normalized input data by the standard deviation was applied. And the [7$\times$10$\times$10$\times$1] neural network structure was selected. Test results showed that the neural network algorithm using normalized input data was very effective to detect the condenser fouling and the evaporator fan fault of an air-conditioning system.
Kim, Sooin;Lee, Sangwoo;Kim, Hakhee;Kim, Wongyum;Hwang, Doosung
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.899-902
/
2021
본 논문은 이미지 저작권 유무 판별을 분류 문제로 정의하고 기계학습과 합성곱 신경망 모델을 적용하여 해결한다. 학습을 위해 입력 데이터를 고정된 크기로 변환하고 정규화 과정을 수행하여 학습 데이터셋을 준비한다. 저작권 유무 판별 실험에서 SVM, k-NN, 랜덤포레스트, VGG-Net 모델의 분류 성능을 비교 분석한다. VGG-Net C 모델의 결과가 다른 알고리즘과 비교 시 10.65% 높은 성능을 나타냈으며 배치 정규화 층을 이용하여 과적합 현상을 개선했다.
Kim, Jeong-Sik;Choi, Soo-Mi;Kim, Yong-Guk;Kim, Myoung-Hee
Journal of the Korea Computer Graphics Society
/
v.10
no.4
/
pp.27-36
/
2004
본 논문에서는 뇌의 하부구조인 해마를 정확하게 분석하기 위한 형상 정규화 방법과 정상인과 간질 환자의 해마를 분류하기 위한 방법을 제시한다. 해마에 대한 형상 분석 과정은 크게 형상 표현을 구축하는 과정, 형상의 유사도를 측정하는 과정, 정상인 집단과 환자 집단을 분류하는 과정으로 이루어진다. 본 연구에서는 해마의 형상 표현으로 메쉬, 골격, 복셀로 이루어진 하이브리드 옥트리 자료구조를 구축하였다. 또한 Iterative Closest Point (ICP) 알고리즘을 사용하여 해마 골격을 기반으로 한 정규화를 수행하였다. 그리고 정규화된 해마 형상을 전역적, 국부적으로 분석하여 최종적으로 입력된 해마가 정상인 또는 간질 환자에 속하는지를 학습된 데이터를 이용하여 분류하였다. 본 논문에서 제시한 ICP 기반의 정규화 방법은 3차원 해마 형상을 정확하게 분석하게 해주고, 골격의 정점 수를 조절함으로써 정규화 시간을 감소시킬 수 있다. 뿐만 아니라 3차원 해마 모델의 형상을 신경망을 통하여 학습시킴으로써 해마의 형상이 변형된 환자 집단과 정상인 집단을 분류하는데 이용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.