• Title/Summary/Keyword: 임피던스 변환소자

Search Result 41, Processing Time 0.021 seconds

Design of Magneto-Operational Amplifier Using Hall Device (Hall 소자를 이용한 자기 연산 증폭기 설계)

  • Baek, Kyoung-Il;Lee, Sang-Hun;Nam, Tae-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • We have constructed the magneto-operational amplifier(MOP) using the advantages of Hall device and an operational amplifier. The MOP necessarily requires a high impedance circuit, a differential-to-single-ended convert-sion circuit and feedback-input-element for operational amplifier characteristics. We have presented a new differential-to-single-ended conversion operational amplifier(DSCOP) having such characteristics. We have designed the MOP using the DSCOP and Hall device and simulated its characteristics, and finally we have constructed the system with discrete elements, and measured its magnetic characteristics.

  • PDF

New Wilkinson Power Divider Using Lumped Elements (집중소자를 이용한 새로운 윌킨슨 전력 분배기)

  • Cho, Seung-Hyun;Park, Chan-Hyeong;Chung, In-Young;Jeong, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.128-134
    • /
    • 2009
  • In this paper, we propose a new lumped Wilkinson power divider which is designed to have lower quality-factors in the impedance transformation. Therefore, it can provide wider bandwidth than the conventional one. Moreover, the proposed power divider consists of fewer number of elements so that the circuit size can be further reduced. Simulation results show that the proposed lumped power divider allows a 50% wider bandwidth in the return loss and isolation performance. The conventional and new Wilkinson power was designed and fabricated based on the derived equations at 2.0 GHz. In the measurement, the proposed divider achieved a good performance with an input return loss ($S_{11}$) of -23.0 dB, an isolation ($S_{23}$) of -29.0 dB and an insertion loss ($S_{21}$) of -3.12 dB at the design frequency with wider bandwidth than the conventional one.

Development of the Dynamic Model of the Supercapacitor Module by the Impedance Spectroscopy (임피던스 분광법을 이용한 슈퍼커패시터 모듈의 동특성 모델 개발)

  • Kim, Sang-Hyun;Choi, Woo-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.295-297
    • /
    • 2008
  • 슈퍼커패시터는 전력밀도가 높고 사이클 수명이 긴 무공해 소자로 신재생에너지원이나 배터리의 동특성 보상 및 수명연장을 목적으로 그 사용이 증대되고 있다. 본 논문에서는 이러한 슈퍼커패시터의 정확한 동특성 모델을 임피던스 분광법(Impedance Spectroscopy)을 이용하여 개발하고, 개발된 모델의 유용함을 시뮬레이션을 통해 검증하였다. 주파수영역에서 개발된 모델은 시간영역으로 등가 변환되어 Matlab/Simulink를 이용하여 시뮬레이션 되었고, 실험결과와 비교되었다. 다수의 제조사에서 제작된 비슷한 용량의 슈퍼커패시터들의 임피던스 모델을 개발하고 전압에 따른 커패시턴스의 변화를 비교하고 분석하였다. 또한, 상용 장비로는 모델링이 불가능한 고압 슈퍼커패시터 모듈의 모델링을 수행할 수 있는 새로운 방법을 제안하고, 제안된 방법에 의해 개발된 모델의 유용함을 실험을 통해 검증하였다.

  • PDF

An Unequal Dual-Band Lumped Element Power Divider (비대칭 이중대역 집중소자 전력분배기)

  • Yoo, Jae-Hyun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.578-584
    • /
    • 2011
  • This paper presents the design and measured performances of an unequal dual-band power divider using lumped elements. After the divider is designed using the conventional single band Wilkinson topology with lumped elements, we obtained the dual band characteristics with filter conversion method. This design method has the features of compact size and easy fabrication, because the high impedance transmission line realizes the lumped elements of equivalent circuit. As an example, an 2:1 divider has been designed and measured at 880 MHz and 1650 MHz in order to show the validity of the proposed unequal divider. The measured performances of the unequal power divider agree with the simulation results.

Broadband Microwave SPDT Switch Using CPW Impedance Transform Network (CPW 임피던스 변환회로를 이용한 광대역 마이크로파 SPDT 스위치)

  • Lee Kang Ho;Park Hyung Moo;Rhee Jin Koo;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.57-62
    • /
    • 2005
  • This paper describes the design of a high performance microwave single pole double throw (SPDT) monolithic microwave integrated circuit switch using GaAs pHEMT process. The switch design proposes a novel coplanar waveguide (CPW) impedance transform network which results in the low insertion loss and high isolation by compensating for the FET parasitics to get the low on-resistance and low off-capacitance. The proposed switch has the measured isolation of better than 24 dB and insertion loss of less than 2.6 dB from 53 to 61 GHz. The chip is fabricated with the size of 2.2mm $\times$ 1.6 mm.

Design of the Electromagnetic Coupling Wideband Microstrip Antenna using FDTD Method (FDTD 법을 이용한 광대역 전자기 결합 마이크로스트립 안테나의 설계)

  • Jang, Yong-Woong;Shin, Ho-Sub;Kim, Nam;Park, Ik-Mo;Shin, Chull-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.473-482
    • /
    • 1998
  • In this paper, characteristics of the wide band microstrip antennas with parasistic element are analyzed by the Finite Difference Time Domain(FDTD) method, and antenna parameters are optimized to get maximum bandwidth, retern loss, input impedance, and radiation pattern are calculated by Founier transforming the time domain results. The characteristics of the antenna are varied and the bandwidth of the antenna is broaded as a length and a width of the driven element, a gap of the driven element and the parasitic element, a width and a length of parasitic element. So the different patchs are resonating at different frequencies and this multipule resonance increase the bandwidth. The Results of the calculation and measurement, the size of the antenna with parasitic element is about a twice larger than a microstrip antenna, but bandwidth is four times better than a microstrip antenna. And these results were in relatively good accordance with the measured values.

  • PDF

Voltage-Controlled Artificial Transmission Line Employing Periodically Loaded Diodes for Application to On-Chip Matching Components on MMIC (MMIC용 온칩 정합 소자에의 응용을 위한 주기적 배열 다이오드 구조를 이용한 전압 제어형 전송 선로)

  • Yun, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • In this paper, we propose VATL(Voltage-controlled Artificial Transmission Line) employing periodically loaded diodes for application to on-chip matching components on MMIC. Compared with conventional microstrip line, the VATL showed a much shorter wave length due to periodic capacitance of diodes, and the characteristic impedance of the VATL was easily controlled bγ changing supplied voltage. Concretely, the characteristic impedance of the VATL was changed from $80{\sim}20{\Omega}$ in a range of $0{\sim}1.05V$ and the VATL showed a wavelength of 1.5mm at 20GHz, while conventional microstrip line showed a wavelength of 5.3mm at the same frequency. Using the VATL, a ${\lambda}/4$ impedance transformer was fabricated on GaAs MMIC for application to on-chip matching components on MMIC. Using the ${\lambda}/4$ impedance transformer made it possible to perform impedance matching between RF components with various characteristic impedance of $30{\sim}100{\Omega}$ by adjusting applied Voltage.

A Resonant-type Step-up DC/DC Converters with Piezoelectric Transducer (압전 트랜스듀서를 이용한 승압형 공진형 직류-직류 컨버터)

  • Park, Joung-Hu;Seo, Gab-Su;Cho, Bo-Hyung;Yi, Kyung-Pyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.343-354
    • /
    • 2009
  • In this paper, a magnetic-less dc-dc switching converter realizing an integrable power conversion system is described. Instead of magnetic devices, the inductive impedance range of piezoelectric transducers is utilized to store and resonate the energy for soft-switching. Piezoelectric devices have no windings and deliver the power by the electrodes, which lead to mass product through semiconductor-manufacturing process. This paper presents a resonant-type step-up dc-dc power converter employing a disk-type piezoelectric transducer, analyzing the operation principles and the frequency control characteristics. Also, a topology extension of the single stage converter into cascaded multi-stage is presented and analyzed with the operation principles and control characteristics. For verification of the analysis, a 10W output dc-dc power converter hardware was implemented. The hardware experiments shows a good frequency control and power efficiency greater than 96% in the single stage. A hardware prototype of the extended multi-stage one was also realized and tested. The results shows that the converter has the same frequency control performance and high efficiency such as 93%.

Highly miniaturized and low impedance RFIC/MMIC impedance transformer for application to the wireless communication components in Vessel (선박 무선통신 소자에의 응용을 위한 초소형 저임피던스 RFIC/MMIC용 임피던스 변환기의 설계)

  • Lee, Kyung-Sik;Yun, Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.417-422
    • /
    • 2005
  • Using the novel microstripline with periodically perforated ground metal, a miniaturized 1/4 ${\lambda}$ transformer was fabricated. The line width of the 1/4 ${\lambda}$ transformer was 20${\mu}m$ and the size of it was 0.0085$mm^2$, which is 1.2% of conventional one. The 1/4 ${\lambda}$ transformer exhibited good RF performances from 10 to 25GHz.

  • PDF

Design of a broadband(2㎓-5.8㎓) FET Switch Using Impedance Transformation Network (임피던스 변환회로를 이용한 광대역(2㎓-5.8㎓) FET 스위치 설계)

  • 노희정
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.155-159
    • /
    • 2004
  • This paper describes the design and the simulation of a single pole double throw(SPDT) FET switch for wireless LAN(IEEE802.11a & IEEE802.11b) applications using drain impedance transformation network with Microstrip transmission line. At the receiving path insertion losses were from 0.8(㏈) to 1.462(㏈) between 2(㎓) and 4(㎓), from l.26(㏈) to 2.3(㏈) between 4.7(㎓) and 6.7(㎓) and the isolations were under 30(㏈) between 2(㎓) and 6.7(㎓). At the transmitting path insertion loss were from 1.18(㏈) to 2.87(㏈) between 2(㎓) and 4(㎓) from 0.625(㏈) to 1.2(㏈) between 4.7(㎓) and 6.7(㎓) and the isolations were under 30(㏈) between 2(㎓) and 6.7(㎓).