DOI QR코드

DOI QR Code

Voltage-Controlled Artificial Transmission Line Employing Periodically Loaded Diodes for Application to On-Chip Matching Components on MMIC

MMIC용 온칩 정합 소자에의 응용을 위한 주기적 배열 다이오드 구조를 이용한 전압 제어형 전송 선로

  • Yun, Young (Dept. of Radio Science and Engineering, Korea Maritime University)
  • 윤영 (한국해양대학교 전파공학과)
  • Published : 2008.01.31

Abstract

In this paper, we propose VATL(Voltage-controlled Artificial Transmission Line) employing periodically loaded diodes for application to on-chip matching components on MMIC. Compared with conventional microstrip line, the VATL showed a much shorter wave length due to periodic capacitance of diodes, and the characteristic impedance of the VATL was easily controlled bγ changing supplied voltage. Concretely, the characteristic impedance of the VATL was changed from $80{\sim}20{\Omega}$ in a range of $0{\sim}1.05V$ and the VATL showed a wavelength of 1.5mm at 20GHz, while conventional microstrip line showed a wavelength of 5.3mm at the same frequency. Using the VATL, a ${\lambda}/4$ impedance transformer was fabricated on GaAs MMIC for application to on-chip matching components on MMIC. Using the ${\lambda}/4$ impedance transformer made it possible to perform impedance matching between RF components with various characteristic impedance of $30{\sim}100{\Omega}$ by adjusting applied Voltage.

본 논문에서는 다이오드를 주기적으로 배열한 구조를 이용한 전압 제어형 전송 선로를 제안한다. 주기적 다이오드 선로 구조를 이용한 전송 선로의 경우, 주기적인 용량에 의해 종래의 전송 선로에 비해 선로 파장이 대폭 축소되며, 인가 전압을 조절하여 전송 선로의 특성 임피던스를 쉽게 제어할 수 있다. 구체적으로는, GaAs MMIC상에 선로 폭 $20{\mu}m$인 전송 선로에 주기적으로 배열된 다이오드가 접속된 경우, $0{\sim}1.05V$ 사이의 전압 조정에 의해 $80{\sim}20{\Omega}$ 범위의 특성 임피던스 조절이 가능하며, 20 GHz에서의 선로 파장이 종래의 전송 선로가 5.3mm인 반면, 주기적 다이오드 선로 구조의 경우에는 선로 파장이 1.5mm 밖에 되지 않는다. 그리고, 본 논문에서는 주기적 다이오드 선로 구조를 이용하여 K 밴드 정합용 ${\lambda}/4$ 임피던스 변환기를 GaAs MMIC상에 온칩으로 제작하였다. 상기 ${\lambda}/4$ 임피던스 변환기를 사용하는 경우, $0.25{\sim}0.75V$ 사이의 전압 조정에 의해 $30{\sim}100{\Omega}$의 다양한 범위의 임피던스를 가지는 RF 소자간의 임피던스 정합이 가능하다.

Keywords

References

  1. B. Matinpour, N. Lal, J. Laskar, R. E. Leoni, and C. S. Whelan, 'K-Band receiver front-ends in a GaAs metamorphic HEMT process', IEEE Trans. Microwave Theory Tech., vol. 49, pp. 2459-2463, Dec. 2001 https://doi.org/10.1109/22.971636
  2. K. Y. Lin, I. S. Chen, and H. K. Chiou, 'A 25-65 GHz GaAs pHEMT cascaded single stage distributed amplifier with high gain/area efficiency', in Proc. Asia-Pacific Microwave Conf., Yokohama, Japan, pp. 722-725, Dec. 2006
  3. C. Karnfelt, H. Zirath, J. P. Starski, and J. Rudnicki, 'Flip chip assembly of a 40-60 GHz GaAs micostrip amplifier', in Proc. 34th European Microwave Conf., Amsterdam, Netherlands, pp. 89-92, Oct. 2004
  4. P. Cortese, M. Camiade, W. Doser, J. Shaefer, and N. Moeller, 'Fully integrated and plastic packaged 24 GHz VCO for ISM and automotive applications', in Proc. 34th European Microwave Conf., Amsterdam, Netherlands, pp. 253-255, Oct. 2004
  5. S. Kumar, L. K. Chia, and H. Morkner, 'Low-cost active frequency-doubler MMIC in SMT package for 6-20 GHz commercial applications', in Proc. 34th European Microwave Conf., Amsterdam, Netherlands, pp. 1021-1024, Oct. 2004
  6. A. Bessemoulin, M. Parisot, P. Quentin, C. Saboureau, M. V. Heijningen, and J. Priday, 'A 1-Watt Ku-band power amplifier MMIC using cost-effective organic SMD package', in Proc. 34th European Microwave Conf., Amsterdam, Netherlands, pp. 349-352, Oct. 2004
  7. Y. Yun, M. Nishijima, M. Katsuno, H. Ishida, K. Minagawa, T. Nobusada, and T. Tanaka, 'A fully- integrated broadband amplifier MMIC employing a novel chip size package', IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2930-2937, Dec. 2002 https://doi.org/10.1109/TMTT.2002.805284
  8. Y. Itoh, T. Takagi, H. Masuno, M. Kohno, and T. Hashimoto, 'Wideband high power amplifier design using novel band-pass filters with FET's parasitic reactances', IEICE Trans. Electron., vol. E76-C, no. 6, pp. 938-943, 1993
  9. D. M. Pozar, Microwave Engineering, Addison- Wesley, Reading, 1990
  10. T. Fujii, Y. Kokubo, and I. Ohta, 'Compact CPW rat-race and branch-line hybrids utilizing slow-wave structure', in Proc. Asia-Pacific Microwave Conf., Yokohama, Japan, pp. 1349-1352, Nov. 2006
  11. J. S. Lim, Y. C. Jeong, D. Ahn, and S. W. Nam, 'Improvement in performance of power amplifiers by defected ground structure', IEICE Trans. Electron., vol. E87-C, no. 1, pp. 52-59, Nov. 2004
  12. D. H. Lee, Y. B. Park, and Y. Yun, 'A highly miniaturized Wilkinson power divider employing TT-type multiple coupled microstrip line structure', Electronics Letters, vol. 42, no. 13, pp. 763-765, Jun. 2006 https://doi.org/10.1049/el:20060895
  13. Y. Yun, K. S. Lee, C. R. Kim, K. M. Kim, and J. W. Jung, 'Basic RF characteristics of the microstrip line employing periodically perforated ground metal and its application to highly miniaturized on-chip passive components on GaAs MMIC', IEEE Trans. Microwave Theory Tech., vol. 54, pp. 3805-3817, Oct. 2006 https://doi.org/10.1109/TMTT.2006.881626